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SECTION 1

INTRODUCTION

1.1 Purpose of Study

In recent yvears, with accelerated developments in aerospace technology,
the needs for accurate and rapid methods for flight-venicle-safety analysis
and for structural design have been keenly felt. In design, one must account
for tne interaction of the structural system witn varioué types of environ-
mental dynamic conditions such as landing, maneuvering, gust, blast, etc. Also
of interest is the interaction of a high-velocity fragment with the structure
whigh is intended to contain and/or to deflect the fragment; uncontained frag-
ments whicn may be generated from the failure of high-speed rotating turbojet

aircraft engine parts could damage equipment and threaten passenger safety [l]*.

For efficient minimum weight (optimum) design, it is often necessary to
take full advantage of the load-carrying capacity of available materials by
permitting the material to proceed well into the plastic range; thus, non-
linear material behavior must be accounted for in some design analyses. Also,
frequently, it is necessary in predicting structural responses to consider geo-
metric nonlinearities, specifically, when the deflections are large enough.
Multilayer structures involving composite materials which have high strength and
low density properties are becoming useful in aerospace structures as well as in
other applications. The complex and nonlinear character of suci: structural
problens, however, makes it almost impossible for one to carry out a conventional
analytical solution in closed form. In order to provide a practical means of
obtaining meaningful predictions for this kind of complex problem, numerical

analysis procedures have been developed.

The general numerical methods of structural analysis may be divided con-
veniently into two categories. The first category, "numerical solution of the

governing algebraic and/or differential equations" is based on mathematically

*
Numbers in brackets [ ] refer to references cited at the end of the text.



approximating and solving the governing differential equations either by
finite~differences {2, 3, for example] or by forward integratiod+(4, 5, 6, for
example]. The second category is the "finite-element method" which is most
systematically based on variational principles. In this method, the solid con-
tinuum is represented by a finite number of regions which are connected at a
finite number of nodes along interelement boundaries; the geometric and the
material properties of the continuum may be faithfully retained in the idealized
structural assembly. In the past several years, the finite-element method of
analysis has undergone intensive development and has proved to be a very effec~
tive and powerful method for analyzing certain‘claSSes of problems, especially
for a continuum or structure with complicated boundary conditions, geometric
shape, and material properties. The relative ease and versatility with which
the finite element (FE) method can be applied to complex structural shapes in
comparison with the finite-difference (FD) method is often regarded as an im-
portant attribute of the finite—~element method. Accordingly, the assumed-dis-
placement version of the finite-element method of analysis for large-deflection
elastic-plastic transient responses of simple structures is developed in the
present study*. Various aspects of the present development are given in
Sections 2 through 5; for convenience, a review of the pertinent literature on

this topic is given in Subsection 3.1.

Discussed in Section 6 is a timely problem to which the present method
of analysis has been applied; this concerns rotor-blade fragment impingement
upon (a) a complete circular structural containment ring ¢r (b) a segment of a
circular structural ring which is supported in one of several ways. Sought
for (a) is a prediction of the motion and structural deformation of the contain-
ment ring, as well as the motion of the (idealized-as-rigid in the present
first-approximation analysis) rotor blade; suitably accurate engineering pre-
dictions of strains are desired. Similar data in category (b) are sought, but

there is greater interest in observing the “diverted trajectory" of the rotor

This method is applicable to problems in one space variable such as beams and
shells of revolution.

*

Principal emphasis has been devoted to employing the assumed~displacement
type of finite-element model; however, other types of finite-element models
such as eguilibrium-stress models, hybrid models, and mixed models {[7]
could also be used for this type of problem.

2



blade -~ the idea of interest being to divert the blade to a new "harmless
direction". Further background on the rotor fragment containment/deflection
problem and on alternate or supplementary methods for its analysis is given
in Subsection 6.1. Section 6 is devoted to discussing the rotor burst frag-
ment containment/deflection problem, and the application of a method of analy-
sis developed in this study to analyze some simple cases of fragment impinge-

ment upon containment and/or deflection structures.

1.2 Synopsis of Investigation

The present study is devoted to developing and validating a method to
analyze the large deflection transient responses of simple structures, in-
cluding elastic-plastic material behavior. The assumed-displacement finite-
element apprbach which is based upon the Principle of Virtual Work and
D'Alembert’s Principle (or equivalently, Hamilton's Principle) is used to formu-
late the governing equations. The resulting equations of motion are solved by
a direct timewise numerical integration scheme. This method has been evaluated
(see Section 5) by applying it to a sequence of transient response examples
having reliable indeéendent analytical or experimental results, for a definitive
comparison. This development is then applied to the rotor fragment containment/
deflection problem. A simplified fragment structure interaction model which
utilizes momentum and energy considerations of the s§ystem is employed to pre-
dict the collision-induced velocities imparted "instantaneously" to the

affected ring segment and to the fragment.

Sections 2 through 5 pertain to the development and evaluation of the
present finite-element method for predicting both small-deflection and large-
deflection elastic and/or elastic-plastic transient responses of simple struc-
tures. The general equations which govern large elastic-~plastic dynamically-
induced deformations of a continuum are presented in Section 2 in general three-
dimensional tensor form. Section 3 is devoted to the development of an over-
all method of solution, following a review of the pertinent literature dealing

with this class of problems; the spatial finite-element approximation together

with the temporal finite-difference approximation are used. Also in Section 3,
the equations of motion for the finite-~element treatment are derived from a

variational statement consisting of the Principle of Virtual Work and



D'Alembert's Principle; the resulting equations are developed in two forms:

(a) the "conventional form" (see Eg. 3.1}, and (b) an "improved" unconventicnal
form (see Eq. 3.2). The new improved formulation (b} is shown (in Section 5)
to be more efficient and economical for computing the large~deflection elastic~
plastic transient responses of simple structures than is the conventional
finite~element formulation (a). In Section 4, the general formulation dis-
cussed in Section 3 is developed in detail for an arbitrarily curved beam
having (a) zero and (b) non-zero transverse shear deformation. Finally,
Section 5 contains an assessment of this method of analysis by means of a
sequence of problems for beam and ring example structures which are subjected
to transient mechanical loading or to initial impulsive loading; comparisons

of the present predictions are made with reliable experimental data and/or

independent predictions (finite~difference and/or analytical).

In Section 6, the problem of burst-rotor fragments interacting with
either a complete or a partial containment/deflection structural ring is dis-
cussed. Energy and momentum consicderations are employed to predict the collision-
induced wvelocities which are imparted to the colliding fragment and to the af-
fected ring segment (the associated analysis method is termed the collision-
imparted velocity method, CIVM). This collision analysis is combined with the
earlier—-developed FE analysis to permit one to predict the resulting large de-
formation responses of containment/deflection rings. Comparisons with limited

experimental data are also given.

The entire study is summarized and pertinent conclusions are drawn in

Section 7.

Also, three appendices are included. Appendix A contains the description
of the mechanical sublayer model for strain-hardening, strain-rate sensitive
material behavior. In Appendix B, all of the matrices used in the present
analysis for the assumed displacement finite-element formulations are listed.
Appendix C contains, for purposes of illustration, the formulation of the
equations of motion based on a mixed finite-element method (1) by assuming a
displacement field which is continucus over the entire solid and (2) by using
an assumed-stress field for the individual element; however, no evaluation of

this model has been made in this report.



SECTION 2

GENERAL FORMULATION

2.1 Introduction

In this section, the equations which govern the large deflection dynamic
and/or static responses of a continuum are presented. Elastic-plastic strain-
rate~dependent material behavior is considered, but not viscoelasticity. The
equations are derived in general tensor form for convenience and generality
and, therefore, any coordinate system can be employed for defining the three~
dimensional space containing the continuum. These equations are later speci-

alized to treat simpler classes of problems.

The terminology "large deflections” as used here indicates, for example,
that the lateral deflections of beams and/or plates are large compared with
the thickness of the structure; the change in geometry is significant. Through
the strain~displacement relations and the equilibrium equations, the geomettic
nonlinearities are introduced into the theory. It should be noted, however,
that in the present analysis, the strains (extension and shear) are txeated as

being small compared with unity.

In a finite-strain analysis, there are various possible types of defini-
tions of stresses and strains (Refs. 8, 9, 10) based on either the predeformed
or post-deformed configurations of the continuum, and the distinctions between
them cannot be neglected; whereas, they may be indistinguishable in small-
strain theory. The constitutive relations for cases involving finite elastic-
plastic strain are uncertain (not well established), primarily because of the
lack of adequate experimental data. However, finite-strain predictions have
been of increasing interest recently, for instance, in connection with ex-
élosive forming of structural shapes. The analysis tools for this class of

problem are much desired, and further research is required.

In this study, the indicial notation and summation convention associated

with vector and tensor analysis are used.



2.2 Governing Egquations

2.2.1 The Strain-Displacement Relations

Consider the continuum in its process of deformation from an initially
undeformed state which exists at time t_ (Pig.l). Bach material point in the
3-dimensional space can be identified by a general curvilinear coordinate sys-
tem (termed Lagrangian) Ej and an inertial Cartesian rectangular coordinate
system Yj fixed in space. Let the position vector of a given material point
in the initial undeformed state be ;]Ej, to) and the position vector of the
same material point in the deformed* state at any instant of time t be
Rigd, o).

Base vectors for the coordinate system EJ may be defined in both the un-

deformed state and the deformed state of the continuum, respectively, as

g 2k o G, T ?_Bi (2.1)
L= =3 a - .

_ i 2% i 25

The metric tensor gij associated with the undeformed state and the metric

tensor Gij associated with the deformed state are defined, respectively, by:
Lij =4 & o Gy T GG 2.2

The contravariant metric tensors gmn and e are defined, respectively, through
the relations** ) n

mn 5'\ G Gm _ 5n
ZIM‘P 3' - ? ’ mp 4

(2.3)

where 6; is the Kronecker delta defined as

5-; :{ | ifn=p

0 ifn#p (2.4)

The respective contravariant base vectors are defined by

— LT - -~ A _ 3 =
¢ :?’13’7‘ , G =6 G’i (2.5)

*
Quantities associated with the deformed state are represented by capital

letters, and lower case letters denote the initial undeformed state.
stk .
Index gquantities such as i, j, p, m, n, k, etc., take on values 1, 2, and 3.
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The deformed position vector R and the undeformed position vector r

are related by the displacement vector ;kﬁj, t) as follows:
— i N | =gl
R (g, t)=rgl )t v (gl t) (2.6)

The displacement vectox v may be expressed in component form with re-

spect to the base vector system of the undeformed state at time to as

o A

— {5z -
v = V 3/’( = Vi 3' 2.7)
The Lagrangian strain tensor associated with the deformation process
is defined by

. - g
7,&7 - ? (GA] ?AZ)

(2.3)
and can be written in terms of the displacement components as
Lou e vy kv
Y =3 (Vap TV * Vi Yir ) (2.9)

where vi j denotes covariant differentiation of vi with respect to EJ using the

’

metric tensor of the undeformed state and is defined as

V.
Viyg = '%EA'{ - f,(kj.}o Vi (2.10)
where [ikj}o is the Christoffel symbol of the second kind associated with the
undeformed state (subscript "o"} and i§~défined by
k } ==.Z_i; . sk = 2;?1 .q
L= er & = 5er
Differentiating Egs. 2.7 and 2.9 with respect to time t which is a monotonically

(2.11)

. . . . - K. .
increasing quantity, and using the fact that g, and {i J}o are not functions of
time (fixed quantities with respect to the initial state), one may obtain the

following expression for the displacement rate:

; - l‘:— - . -——‘L.

v = Vi Vi 4 (2.12)
Hence, the strain rate éij which is related to the displacement and displace-

ment rate is given by



(2.13)

. l k, vk yy ko vk
77=—Z~[(54+"»4‘)Vk,;'+‘5,‘"V»g‘)v,a}
where (.) denotes partial differentiation with respect to time t.

In the problem of interest, expressions are required for the strain incre-
ment AYij and the displacement increment Av which occur when the continuum is
deformed incrementally from one deformed state at time t., to another deformed

1
state at time t2, where t2 = tl + At (the solution procedure is to be dis-
cussed later for transient-response behavior of a continuum). If the time-
step At between these two instants is small, the displacement (denoted by 2;)

at time t_ can be constructed by employing the Taylor series expansion involv-

2
ing the finite increment At in time*:
t I (at)? 3
z I_ 2 At = + + (at) O(Qt)
= _ V(At) Y +
v = V+f v V c (2.14)
i
or in component form
' ; (at)? £)3
! [ oA P
ZV,; =y + vorat) + v =7+ 0l 4 (2.15)

and correspondingly, the Lagrangian strain Y 57 at time t_ may be expressed

2
as
’ . | o (At)z 3
t = L (at)+ YL =24 0(et)
7‘? 7‘7 f ; d _Y? Xi 7:] 2 ( (2.16)
In Eq. 2.16 terms of the orxder of (At)3 and higher are neglected because of

the smallness of the time-step At.

It perhaps should be mentioned that the displacement vector v can be ex-
pressed alternatively in terms of components with respect to the deformed base

vectors at time t as
m — . —m
V G, = V.G (2.17)

and the corresponding strain tensor {termed Almansi, see Ref. 11) has the form

*
Note that prescripts, both sub and super, are used here to identify quantities
associated with particular instants in time.



\winn = Eg ( \Cnln + »Cllﬂi -V kln‘ x/k In )

(2.18)

where Vmin indicates also covariant differentiation but with respect to the
metric tensor of the deformed state and is defined as
\/ — ?\/m _jk V
mln = 2 E;" |mn k

where - —

(2.19)

|
-
Y

m = n . =k
{mkaa_g'_“’e’_ag'"e ‘ (2.20)

Since E; as well as {:n} are functions of time, the displacement vector

rate and the strain rate expressed in terms of components with respect to the
deformed base vector system will not take as simple a form as Egs. 2.12 and
2.13 in which the components are expressed with respect to the undeformed base

vector system. Hence, the strain-displacement relations represented by Eg. 2.9

are chosen for use.

2.2.2 Descriptions of Stresses and Forces on a

Deformed Continuum Element

Consider the geometry and the forces acting upon an arbitrary parallele-~
piped element on its path of deformation (see Figs. 1 and 2). In the initial
undeformed state, it has the volume dvo bounded by surfaces dAom (having edges
dinan and dgpap, where m # n # p). After deformation, this Lagrangian paral-
lelepiped has a volume dV and is bounded by surfaces dAm (having edges
dEnEn, dé:PEp) . Thus,

dV,=[Fdedg dg® | 4V =[G dg'dE IE’

d Aom=[TF™ dE"der | dA=JGG de" oE]

(2.21)

where g and G are the determinants of 9,4 and Gij' respectively.

In the following, convenient descriptions for stresses and forces acting

upon the deformed parallelepiped element are to be discussed as a prelude for



their use in the Principle of Virtual Work from which the equations of motion
and boundary conditions will be cbtained.

Let 0 denote the stress vector associated with the §  surface (at
i
'3

= const) in the deformed state measured per unit xnltlal undeformed area.
The Klrchhoff stress tensor s i3 is deflned by (Fig., 2):

g7 o= s Gy =S; G!

(2.22)
or

&g =5y Vi) &y

{2.22a)
The stress resultant T exerted on the deformed surfaces dA, by the neighboring

element of the continuum may be expressed in the form

R A TN R LR LIRS

(2.23)
Alternatively, let U be the stress vector associated with the §

1 surface
in the deformed body but measured per unit deformed area; thus, the Eulerian
stress tensor, le, is deflned by (Fig. 2).

—A _
rigt = 7 G;,’ = Tz GT (2.24)
Then the stress resultant, Ei, may be expressed as
A [T if =
7 NGGeY = /G T G?' (2.25)

Likewise, the body force, F (inertia, gravitational, magnetic, etc.) per unit

mass acting on the deformed body may be described in component form either with
respect to the undeformed base vector of the coordinate system §  as

= £ ?‘ = {. 3“

s2.26)
oxr with respect to the deformed base vectors of the coordinate systen El

1?=F*§L'=FA-§1

(2.27)
ij
each othex by

It should be noted that the stress tensors § J and T are related to

10



Sq-‘— /%—: Tq (2.28)

3

P . ij i .
Also, from moment equilibrium it can be shown that S 3 and 17 are symmetric

stress tensors. Thus
if

2.2.3 Conservation of Mass

s , oTi=1? (2.29)

The conservation of mass may be expressed as (Ref. 1l1) to be

(/{f pdVe = /V/(p 4V .o

or using Eg. 2.21, one may write
([[ 9. 17 eeaxee’ =[[[pJ& o2 4x'%]
Vo v

where the integrals extend over the same particles. The quantity po is the
density in the original configuration and p is the current density of the de-

formed body. Since this relation must hold for all bodies, one has
Rig - plG (2.32)

This gives the relation of densities in different configurations of the con-~

tinuum to that of the original undeformed continuum.

2.2.4 The Principle of Virtual Work

In this subsection, the Principle of Virtual Work for the continuum
will be presented and is employed to derive the equations of equilibrium and

the boundary conditions.

Consider the deformed continuum in equilibrium, under the action of
body forces, externally applied surface tractions, and with arbitrary deforma-
tion conditions consistent with the prescribed geometric boundary conditions.
Let this equilibrium configuration be subjected to an arbitrary and independent
set of infinitesimal virtual displacements without violating the prescribed
geometric boundary conditions. The Principle of Virtual Work states that the

virtual work done bﬁ the external forces (body forces and surface tractions)

11



is equal to the virtual work of the internal stresses. By utilizing the unde-
formed metric of the coordinate system El, the Principle of Virtual Work may

be stated mathematically as

SU“EW:O (2.33)

where

the internal forces

sU = //[ 5‘.;5 X}d Vo = variation of the work of , ..,
V,

the body force F per unit mass
and (2) of the externally applied
surface traction To' measured per

8 W :///Po ?-SVd\/o-l-/f ‘T'O-SVdAo= variation of the work of: (1)
Ve, Aoﬁ

unit area of the undeformed state

(2.33b)
where s*d is the Kirchhoff stress tensor
Yij is the Lagrangian strain tensor
¢ is the usual symbol denoting the variation of a function -
&v is the variation of the displacement vector and may be
expressed in terms of components with respect to the
undeformed base vectors as
- L=y _ £y — _
XV=S(V 2,()—(SV )3';. (because 9 does not de-
- pend upon displacement,
651-0) L {2.34)

In Egs. 2.33a and 2.33b, V° is the entire undeformed wolume of the continuum
which is bounded by the undeformed surface Ao. The boundary surface Ao can
be divided into two parts: (a) prescribed surface traction boundary Aoc and
(b) prescribed displacement boundary ALyt Then the variation in the
Lagrangian strain tensor, éYij associated with the displacement variation 5;

about the deformed eguilibrium configuration may be expressed as

12



(2.35)
where () n signifies covariant differentiation with respect to the undeformed
metric of the coordinate system E

Substituting Eq. 2.35 into Eg. 2.33a one has

¥ k k
sU :f({S {(8A+V,,()SV;<,3¢JC(V0 (2.36)
~ V.

ij . . .
where the symmetry of S J has been used to combine terms. Upon integration by
parts and using Green's theorem to convert volume integrals to surface integrals,

Eg. 2.36 becomes

51 = [[ 5‘3(5’< vk Ev, nes dA,

—//(15 vii1] 8%V,

(2.37)

where noj is the component of the unit normal vector, ;;, to the undeformed

boundary surface AO, which is defined as

Ne= "oz ¢ (2.38)

Substituting Eqs. 2.26 and 2.34 into Egq. 2.33b results in

5W=mpofk8vkd\/o +£( TO" sv, dAs

(2.39)

k. = . :
where To is the component of To in the dlrect10n>of the undeformed base vector.

13



Thus,

_ k — -
To = To 9 = Tok g (2.40)

substituting Egs. 2.37 and 2.39 into the Principle of Virtual Work one obtains

m{ ‘3(5‘(*\’:*] +pf }’Wk dVv,
ff 5‘7‘(5’E+V‘f‘->m;+Tf]SvkaAo

(2.41)

Since the variation Gvk is independent and arbitrary, this leads to the follow-
ing equation of egquilibrium at any point in the continuum:
if k+vk ] .+ ko~
[s?(é ),7 (% 1 (2.42)
which is a bilinear function in S13 and v°.
Also, on the boundary AOO where the surface traction is prescribed, the

following boundary condition relation must be satisfied:
i3, ck k . = Tk
S by + Vi) nog T, (2.43)

On the portion of the boundary on where the displacement is prescribed, the
relation .
A

= V

v -~ (2.44)

should be satisfied.

It should be noted that all pertinent quantities appearing in 6U and oW
of Eg. 2.33 are defined consistently with respect to the (initial) undeformed
metric of the coordinate system Ei. Also, the integrations are extended over
the original (known) configuration of the continuum. This is usually called a

"Lagrangian description".

Alternatively, by using the relations

odF =9ie | sT=[F T TisTIA e

14



the Principle of Virtual Work, Eg. 2.33, can be converted into the following
equivalent form with reference to the present deformed state (designated as an

Eulerian* description):
f{«"5 g av=(pFsvav-{[T57dA o
% 4 T

It is worthy of special mention that this basic variational formulation,
the Principle of Virtual Work, holds independent of the material stress-strain
relation and the existence of potential functions of the external forces. Also,
it embodies the equation of equilibrium of the continuum.(overall and/or at any
generic point). The variational technique has proved to be a very powerful and
easily applied method for analyzing solid continuum problems. In the present
study, the Principle of Virtual Work, together with the concept of D'Alembert's
Principle is employed for analyzing the large-deflection elastic-plastic
transient responses of structures which may be subjected to an initial impulse
followed by a time-dependent externally-applied forcing function and geometric

constraints.

The D'Alembert Principle states that the dynamic system can be considered
to be in equilibrium under the externally-applied forces if the inertial forces
are taken into account. The Principle of Virtual Work, Eq. 2.33, now with the
virtual work done by the inertial forces specified explicitly may be written
as

sU-§wW=+d6 I =0

(2.47)

where

51:f/fpoﬁ'SVd\/,,:[[fﬂ;\?'SVd\/a (2.47a)
Vo Vo

= variation of the work done by the inertia forces

*

It should be noted that, in fluid mechanics, the Eulerian description is con-
cerned with the state of motion through a fixed grid or a fixed volume in space,
in contrast with the above solid—m%chanics terminology.

15



as ae

In Eg. 2.47a, R=Vsince R=r +V and T is the position vector of the
undeformed body. It is assumed that all body forces other than inertia forces

are taken into account within 6W.

Let Eq. 2.47 be integrated with respect to time between two time limits

tl and t2 to represent the conventional statement of Hamilton's Principle. Thus

[ttZIEU—JV\/-;-é—I]dt =0 (2.48)

{
Integrating the last term which appears under the integral sign of Eq. 2.48 by

t, = —
[t' [[V[opo v-Svtd\/.,Jc]dt
[(/[o{po \‘}'-Svd\/.,]t'—[t‘ [@pj-ﬁd\”dt

(2.49)

parts, results in

j“aldt

i

il

I

Since if the conditions of the dynamic system are prescribed (or are otherwise

known) at the two time limits tl and t2 and are not subjected to variation,

Sv(t=t)=0 , 0V(t=%)=0

one has

(2.50)

Then Eq. 2.49 reduces to

t . t
f:zﬂdt - -{;[/V[[po v’-svdvo]dt=—t"o‘i<dt -
1 { o

vhere

usually seen in Hamilton's pPrinci-
ple).

K = /[[_21 Po V '\'/' d\/o = the kinetic energy of the body (as
Vo

Substituting Eg. 2.51 into Eq. 2.48, one has the Principle of Virtual ~
Work of the dynamic system:

16



t,
f [5U—5W—5K]dt=0 (2.52)
t, ,

It perhaps should be pointed out that either the Lagrangian form or the
Eulerian form of Eg. 2.52 could be used in the exact or in an approximate

analysis of structural responses. For convenient reference, these two forms

are wrltten out in full as follows:

f/fs"w,dv /f/pfsv IN-[[ T 5w 2h,

[-1ad
_mpo\;*‘s\}[dv,] dt =0
YA
«{Lagrangian form) (2.52a)

f /[/Tq”*z‘“/ //PF5 dV[[TJ\AdA
/ﬂpvﬁvm =0

(Eulerian form) (2.52b)

It is seen that the Eulerian description is based on the current deformed
volume, area, and metric tensor; these quantities are functions of the dis-
placement vector, ;) which is to be determined as a function of time. On the
other hand, the Lagrangian description is based on the original (known) volume,

area, and metric tensors and, accordingly, is more convenient.

Because of the complexity in certain structural problems, numerical
methods are of interest and include, for example, finite difference, finite
element, forward integration, etc. In this study, however, the finite-element
approach is used and is based on the variational formulation given by Eq. 2.52a.

Since, in this Lagrangian point of view, the strain would take on its simple

17



form and the mass matrix {as discussed later) would be constant throughout the
calculation of the transient response (and hence need not be re-evaluated at
each stage in the incremental time analysis as would be required by the Eulerian
description), the use of the Lagrangian description would appear to result in
some computational advantages and time saving in solving the problem over the

use of the Fulerian description.

It perhaps should be noted that the Principle of Virtual Work, Eg. 2.52,
can be applied either to conservative or to non-conservative dynamic systems.
For conservative dynamic systems (that is, if the potential of the internal
stress and externally-applied force exist), as well as for dynamic systems with
both conservative and non-conservative forces, another very useful energy
principle called Hamilton's Principle could also be used; this principle can
be derived from the Principle of Virtual Work as employed here (i.e., Eq. 2.48
or Eg. 2.52).

Finally, it should be noted that one need not use the time integrated
form of the Principle of Virtual Work (within which is imbedded D'Alembert's
Principle) if one wishes simply to obtain the correct equations of motion and
the correct boundary conditions ~- the use of Eqs. 2.47 and 2.47a which hold
at each instant in time will suffice for this purpose. However, if one
wishes to formulate a finite-element analysis in both space and time (see
Ref. 12), the "time integrated” variational statement represented by Eg. 2.48
or Eq. 2.52a, for example, is very useful.

2.2.5 Thermodynamic Equations

In this subsection, the thermodynamic equations which govern the large
deflection (static or dynamic response) of the continuum in the presence of
thermal and mechanical effects are presented since it is desired that the
present general formulation include thermal effects for future use, although
the illustrative example problems discussed herein do not include them. These
thermodynamic equations will be used for the derivation of the material elastic

and elastic-plastic constitutive relations presented in the next subsection.

Consider that the continuum initially in the undeformed state with

volume V° and bounded by'surface Ao is subjected to mechanical and/or thermal

18



loading. After deformation, its volume becomes V and is bounded by surface A.

The first law of thermodynamics or the law of conservation of energy

may be written as:

For the Continuum as a Whole:

ﬂ o (F-v+B)dV, f{T v dA, /fa A, dA, /ffPUdV(zsa)
Aoc

At any Generic Point of the Continuum: o
At . i _ .
S 37132 -Q, 6 B =fU (2.54)

where B is the rate of heat input per unit mass

5 is the rate of the heat flux vector across the body
surface measured per unit undeformed area and
=9 9 = Qj

th is the portion of the surface over which the heat

flux proceeds

U is the internal energy per unit mass

pol F' TOI A

oG’ H;, SlJ, and Yij are defined as previously stated.

The second law of thermodynamics (or the increase of entropy

principle) may be written as:

For the Continuum as a Whole:

fusonffadifSam o,

At any Generic Point of the Continuum

0, S -9 ‘-?-"1“ 3’.‘3 (TQ£;£ —Q‘.T,; ) 70 (2.56)
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where S is the entropy per unit mass

T is the absolute temperature

Let the Helmoltz function H be defined as
H = U" TS (2.57)

. Then, substituting for U of Eg. 2.57 into Eq. 2.54, results in
it - £ — ¢ T 7
51%3’_@,1498“9«:(?'{'*75'*57-) (2.58)
It is convenient to eliminate poB from Egs. 2.56 and 2.58 to obtain the in-
. . . Y
A, - + - = . Z0
S Vi fo (H TS) T QT (2.59)

Alternatively, the thermodynamic equations can be expressed in a form

equality

which refers to the deformed state of the continuum.

These thermodynamic equations, if desired, can be employed to deduce
the equation of equilibrium, the continuity equation, and the boundary condi-

tions.

It should be noted that all 6f the equations derived so far are exact for
either finite strain or infinitesimal strain; that is, no restriction on the

magnitude of strain has been made.

2.3 Constitutive Relations

This subsection is concerned with the elastic and elastic-plastic materi-
al behavior of the continuum; also, thermal effects and strain-rate effects
will be discussed.

The elasticity theory (linear or nonlinear) postulates that a unigue
relation exists between the instantaneous states of stress and strain. When
the material is deformed into the plastic range, a unigue relation does not
hold in general between stress and strain, but a functional relation exists:
the strain depends not only on the current state of stress but also on the

history of loading.

At finite strain and/or elevated temperatures, the coupling influences

occurring through thermal effects, elastic deformation, and plastic flow may be
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significant in some cases, and an initially isotropic and homogenecus material
may exhibit appreciably anisotropic and nonuniform behavior. The coupling in-
fluences include for example: (1) the elastic modulii of the material will
change as functions of temperature and continued plastic straining; (2) heat,
which is generated from the dissipation of plastic work can induce the redis-~
tribution of temperature; also, (3) the Bauschinger effect and hysteresis loop
are cbserved which are believed to be due to differential hardening of the
variously-oriented crystals. These complex coupling functional relations, and
the limited available experimental data make it very difficult for one to carry
out the finite strain and/or high temperature elastic-plastic¢ analysis with con-

fidence.

In classical thermal-elastic-plastic theory (Refs. 13, 14) which is re-
stricted to infinitesimal strain, considerable simplification is attained by
decoupling the effect of thermal elasticity, mechanical elastic deformation,
and mechanical plastic flow. The total strain is assumed to be decomposed
into elastic (thermodynamically reversible) strain, and plastic (thermodynami-
cally irreversible) strain. The elastic strain can further be decomposed into
thermal and mechanical parts. Each component has the same invariant properties
as the total strain, but is not expressible in terms of the displacements. Only
the total strain can be related to the displacements. The elastic strain is
related to the stress through a linear-function relation, and the thermal-
elastic strain is treated as an initial (or a prescribed) strain. The elastic
modulus and heat capacity are considered to be invariant under plastic flow;
that is, the influence of plastic flow on the thermal-elastic characteristics
is neglected. Only very recently, some pertinent work has been extended to
finite strain (Refs. 15, 16). However, these theories do not completely

agree with each other, and further research is required.

In order to make the present study self-contained, the thermoelastic
constitutive relation is presented in Subsection 2.3.1. Thermal-elastic-
plastic material behavior is discussed in Subsection 2.3.2. Subsection 2.3.3
is concerned with the strain-rate effect. The general derivations are based

on the thermodynamic equations and follow those of Refs. 14 and 15.
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2.3.1 Thermoelastic Material Behavior

Consider an elastic continuum initially in a reference state with neither
stress nor strain, and of uniform aksolute temperature, T . This continuum is
then subjected to a temperature distribution T(g .t) as well as body forces and
surface tractions which may vary both spatially and temporally. lNow let it be
assumed that the Helmholtz function H, entropy S, heat flux Qk and stress sij
are functions of strain Yij' temperature T, and/or temperature gradient T

{Ref. 15). Thus,

Ho=H (Y T)
S =85 (Y, T)
sH =5y, T)
Q* = Qv T T

Xk

(2.60}

where

H =38 = SH:O when \);j:Oand T=T, (2.60a)

Then the thermodynamic eqguation, Eg. 2.59, becomes

2 H

k
ke o 2H,=—_ QT
(S —poa———ykﬂ)m 9(5+BT)T k>

T (2.61)

At a given state of y ., and T, the guantities Q. and T can be chosen arbi-
k&L k&

trarily. Hence, it may be concluded that

H k
S 'H;;Ik ’ Sz"g‘—f aa ~Q T, 20 (2.62

If the Helmholtz function, H, is specified (for example in terms of
Ykﬂ and T), tne general thermal-elastic relation may be derived from Eg. 2.62.

For infinitesimal strain, the elastic relation between stress and strain
may be assumed to be linear and is known as Hooke's law. Thus, the Helmholtz

function H may be expressed as a quadratic function of Ykl (cubic and higher
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order terms are neglected) :

t}kf i 3
H "Z E }+Ez X;+Es+o(y‘]) (2.63)
where Eluk’q', E2 J, E:3 are functions of T and
A'j E ,h; 7'1’[(]_ Ex’ﬂk E *"?’: £ #4
E' = El \ , 2 2 (2.63a)
Then, from Eq. 2.62 one may obtain .
A'jk! ‘7 )
E ka + Ez _ (2.64)
Let the tnermal strain be denoted by Y , since it is required that § iJ = 0
whien le YTJ, one has .
v ifkE T
Ez = - E, Ykl (2.65)

and Eg. 2.64 becomes )
. }?k] T
ST=E (v V)

Equation 2.66 gives the linear thermoelastic stress-strain relation. The
thermal strain is treated as an “"initial strain" or a prescribed strain which
produces no stress. When the material is isotropic both elastically and

thermally, one may choose

T T
ka =Y 5k1 (2.67)
and (Ref. 17)

17/(1 [G‘ké}d G_AJG'_?I‘] }\G'(?G

(2.68)

where U, A are temperature-dependent Lame’ constants. Further, if the relation

between the thermal strain and temperature is assumed to be

d; =d(MdT (2.69)
it follows that T
-
Y o= T AT dT (2.69a)
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where ¢ is the temperature-dependent thermal expansion coefficient. Then, for
an isotropic and homogeneous material, the linear thermoelastic stress-strain

relation can be written in the form

L A E i [T
Sy =5 M- lzv(??fToo(dT

(2.70)
wnere V is Poisson's ratio, E is Young's modulus, and Y; is defined to be

mi
Gr \)/,,‘7 (2.70a)

It should be noted that the coupling between thermoelasticity and heat

conduction is neglected in the above equations.

2.3.2 Thermoelastic-Plastic Material Behavior

There are two types of common plasticity theories, termed "flow" and
"deformation". The deformation theory of plasticity assumes that, as in elas-
ticity, there exists a one-to-one correspondence between stress and strain.
The flow theory of plasticity states that there is a functional relation be-
tween the incremental stress and the incremental strain. Only for propor-
tional loading where the stress ratio remains constant, and for a certain
restricted range of loading paths other than proportional loading (Ref. 18)
(through the assumption of the possibility of singularity in the yield surface)
does the deformation theory agree with the flow theory. In order to include
the capability to analyze general loading paths including loading, unloading,
and cyclic loading, the "flow-type" theory will be incorporated into the present

analysis.

The behavior of a general elastic-plastic material can be characterized
by the following two ingredients. First, assume the existence of a boundary
(vielding surface) in stress space which defines the elastic domain. Within
the boundary the continuum deforms elastically. Only at the boundary, the
onset of plastic flow (irreversible deformation in a thermodynamic sense) is
possible and no meaning is associated with the region that is beyond the bound-
ary. Second, one employs a flow rule which describes the behavior of the ma-
terial after yielding has started; it gives the relation of plastic flow

(strain increments) to the stress (or stress increment) and the loading history.
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Another basic assumption in the theory of an elastic-plastic continuum
is the introduction of a plastic strain tensor. The plastic strain tensor,
ij, is assumed to have the same invariance properties as does the Lagrangian
strain tensor, Yij' The gquantity Y?j is related to Yij by an elastic strain
tensor Y i3’ in the form (Ref. 15)

e
Xg _7 _LY‘; (2.71)

No kinematic meaning is given to Y:j and ng, but only their sum, Yij as de-
fined by Eq. 2.8 is related to displacement by Eq. 2.9.
The yield surface, ¢, is assumed to be expressible in terms of certain

variables and may be expressed as

$ (5‘3 Y‘&' T, k) =0 (2.72)

where K is a hardening parameter which depends on the strain history. Differ-

entiating Eq. 2.72 with respect to time gives
% 2@ S 2§
25t

If the conditions (a) k) < 0and ¢ = 0 or (b) ¥ < 0 are satisfied, the state

P L 2% 2P
27 7 +3TT+?K (2.73)

change can only be elastic (reversible), any plastic deformation (which may

have been incurred earlier) remains unchanged. Thus,

% I 2% . a $ .
7,4] = K =0 when ‘3;" T(O and f =0 (unloading)
a? 43 ?§ - 1 loadi
or 5‘7 S 2"]’ and § = () (neutral loading)
or g? <0 (elastic deformation) (2.74)

If it is postulated that the plastic strain rate y? is linearly related to
i3

s™ and T and with the consideration that Yp is zero for a neutral change of
loading, the following linear relation may ne chosen as a reasonable approxima=-

tion:
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-4 2P . o<
Y= D,c;'['——? S_ T oT T

£1 ) Sk (2.75)

when

;'—"?H Skz + :—'—%‘T z0 and é =0 (loading)
where Dij i? a symm?tric function of skL’ T, and the previous strain history,
but not of § and T. This assumption, which is suggested by Ref. 14, is
based on the consideration that in a crystal grain, when the stress state is
such that the resolved shears along certain slip direction reach the critical
value, the plastic-strain increment occurs. Hence, as a statistical average
over all grains, a definite macroscopic stress is needed. The stress-increment
only determines the magnitude of the plastic-strain increment. Further, the
{thermodynamic) Helmholtz function H, entropy S, and heat flux Q , may be
assumed to be functions of Y:z' yiz, and T (Ref. 13). Thus,

H =H (%, v o1
S =S (x5, Y, T
Q' =Q Y YL T T

(2.76)

Then, from the thermodynamic equation, Eg. 2.59, one may deduce that

K, 2H
STEH 2V

- - 2H
S" 3T

(2.77)

If the functions ¢, Di" and H are chosen, Egs. 2.74 and 2.75 will per-

J
mit the determination of the plastic strain increment corresponding to the
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stress increment and temperature increment, and Eq. 2.77 predicts the relation
between elastic strain components and the stresses. It should be noted that
no restriction is made on the magnitude of the strain and the symmetry of
material properties in the above equations. But, for finite strain the assump-
tion that the total strain can be linearly decomposed into elastic and plastic
components and the postulate that plastic strain rate is linearly related to
stress rate and/or temperature rate requires careful scrutiny, as claimed by
Ref. 16, because of the non-Euclidean characteristic of the intermediate
stress-free state associated with the plastic flow. However, for infinitesimal
strain, these assumptions constitute a satisfactory approximation, since the
deformation behavior exhibited by most engineering materials in infinitesimal
strain is that the irreversible plastic flow causes no volume change and the
reversible elastic strain is small., The specific considerations upon which the

functions ¢ and Dij are chosen will be discussed in the following.

In simple tension and/or compression tests of most engineering materials,
the uniaxial stress-strain relation indicates the existence of a yield stress
{(elastic limit), Oo' beyond which plastic (permanent) deformation takes place.
However, under multiaxial stress (and strain) the behavior is much more compli-
cated. Various yield criteria and flow rules have been proposed for the pre-
diction of the onset of plastic flow and the relation among plastic flow, stress,
and stress history. Among them is the Mises-Hencky yield criterion and its as-
sociated flow rule which usually fits experimental observations better than the
Tresca criterion, for instance, for polycrystalline metals and yet is mathema-
tically simple. The Mises-Hencky rules will be discussed and adopted in the

present analysis.

The Mises~Hencky yield criterion may be physically interpreted as
“yielding begins whenever the distortion energy equals the distortion enexgy
at yield in simple tension". Thus, hydrostatic pressure, for an isotropic
material, (tension or compression) does not affect the yielding, plastic flow,
and resultant hardening. Stated otherwise, no plastic work is aone by the
hydrostatic component of the applied stress. This implies that therxe is no

plastic (or irreversible) change in volume. Thus,
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. °S
‘rz. =0 or \fi; =0 (2.78)

where ng is the spherical plastic strain-rate tensor.. For an initially

isotropic material, the Mises-Hencky yield function can be written in the form

{lS = 5_’2 — 3—’0‘02('1'):0 (2.79)

where D o [ . . | 2
D | i . A 4+ _ L m
Iz 2 T; L,( 2 [T?f Ty 3 ” ] ' (2.79a)
D X
Tj is the deviatoric stress tensor of T; in mixed

component form
OO(T) is the temperature-dependent yield stress in

simple tension.

Equation'2.79 represents a hypersurface in nine~dimensional stress space. Any
point on this surface represents a point at which yield can begin. Also, it

is assumed that the temperature effect changes only the size of the yield sur-
face (through Oo(Tn and that the surface will retain the same shape and orienta-
tion as in the initial reference temperature state. For moderate hydrostatic
pressure and temperature, this is a very close approximation and is found to be

in good agreement with experiment for common metals.

Then, from Eg. 2.78, the function Dij in Eg. 2.75 must satisfy the
following two necessary conditions: (1) the restriction Dii = 0 must be im-
posed to ensure zero plastic volume change and (2) the principal axes of the
plastic strain increment and of Dij must coincidg with the principal axes of
stress, since the material is isotropic. These two conditions can be satisfied

with sufficient generality by choosing

A

2D .
D.. =A 25;1 (2.80)

where A and D are functions of the deviatoric stress invariant and possibly
also of the stress history.
Next, the derivation of the function D will be based on Drucker's postu-

late (Ref. 19). Drucker's postulate states that "the net work performed by
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an external agency over a cycle of loading and unloading is nonnegative, posi-
tive if the plastic flow has occurred, and zero if there is only change in
elastic strain". This postulate leads to the following two requirements on the
plastic behavior: (1) the convexity of the yield surface with respect to the
origin of the stress space, and (2) the outward normality of the plastic strain
increment‘vector to the yield surface. It is noted that the Mises-Hencky
yield function given by Eq. 2.79 satisfies the convexity condition imposed on
the yield surface. The second requ%rement suggests that the function's'may

take the same form as ¢; thus,

o 2% K

Y -n 2L pS +‘—”

; 5 [ 5 )
N 2 ¢

_ - (2.81)
where 2-:;*

l
7\/-_— Al ;g 15 Gk 2$ T) is a nonnegative scalar quantity -
and Y# is the deviatoric plastic strain

rate tensor.

Substituting the Mises-Hencky yield function, Eq. 2.79, into Eq. 2.8l and
using Eg. 2.28, one obtains the following £ilow rule:

i _ /-2--%—-. - /3@ BT! g
73. = A 251 27T} 257 =n 5 (2.82)

Qr .

o . .
Y4t = X 5} (2.82a)

; is the deviatoric stress tensor of S; in
mixed component form and is defined to be
Dy i 1.m.i

st=st-2s" st

b i 3 mj
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For certain materials, the yield surface will change in case of continued
straining beyond the initial yield. The change of the yield surface (called
subsequent yield function) that characterizes the work hardening (or strain
hardening) behavior of the material depends on the loading history. There are
several hardening rules available to describe the subseguent yield function.

Among them, the popular ones are "isotropic hardening" and "kinematic hardening".

Isotropic hardening assumes that during subsequent yielding from a plas-
tic state, the yield surface will expand uniformly with respect to the origin
in the stress space but will retain the same shape and orientation as it had
initially. It does not take into account the Bauschinger effect that is ex~
hibited by many structural materials. Mathematically, the subsequent yield
function for an isotropic hardening material can be put in the form:

(2.83)

where dwf = sLj dygj > 0 is the irreversible plastic work expended.

To account for the Bauschinger effect, Prager introduced the "kinematic
hardening rule" which postulates that during subsequent plastic flow, the yield
surface translates (as a rigid body) in the stress space and that it will retain
the same size, shape, and orientation that it had initially. Mathematically,

this can be expressed as
¢ (- O(A;) =0 ' (2.84)

= aiJ(ij) which represents the translation of the referenced origin

ij

in the stress space of the yield surface and depends on the degree of hardening.

where «

It should be noted that, in the present analysis, the strain-hardening
behavior of the material will be accounted for by using the well-known
"mechanical sublayer model" (Refs. 20, 21, 22). The feature of this model is the
inclusion of kinematic hardening (see Appendix A). In this model, the material

at any point is conceived of as consisting of "sublayers"; each sublayer behaves
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as an elastic, perfectly-plastic medium, having common strain and a common
elastic modulus but appropriately different yield stresses. For a perfectly~'
plastic medium (nonhardening medium), the yield surface remains unchanged in

the case of continued straining beyond initial yield.

2.3.3 Strain-Rate Effect

For some engineering materials, the uniaxial stress-strain curve of
dynamic loading tests will usually be different from those of static tests.
The yield stress frequently increases with the increase of strain rate. How-

ever, this strain-rate effect arises in a less understood fashion.

The most general form of the uniaxial stress-strain relation including

the strain-rate effect may be expressed as (Ref. 23)
eE=X (0 &, T)o+Y(q,¢g, T) (2.85)

where
0 and € are the uniaxial stress and strain, respectively
T is temperature

X and Y are functions of state

Under static loading tests, the rate-term may be neglected and one has the

static uniaxial stress~strain relation
Y(0,&e,T)=0 (2.86)

One of the simple methods for approximating the strain-rate effect and
which is in good agreement with experiment on certain types of common metals
and alloys is to assume that the uniaxial stress-strain curve is affected by
strain-rate only by a quasi-steady increase in the yield stress above the "static"
test yield stress and that the elastic deformation is independent of strain rate.
The increase in the yield stress under strain rate may be expressed in the follow-
ing simple form (Ref. 24):

.4
oo=0 [1+1517]



where

00 is the static yield stress

€ is the uniaxial {or equivalent) strain rate

D and p are empirically-determined constants for the
material, which may be temperature dependent

o, is the yield stress under €

Alternate approximations are discussed, for example, in Refs. 25 and 26.
Equation 2.87, however, has been employed with satisfaction in recent years,

and is adopted for the purposes of the present study.
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SECTION 3

GENERAL OUTLINE OF METHOD OF ANALYSIS

3.1 Background and Survey of Pertinent Literature

In this investigation, attention is restricted to methods for analyzing
dynamic structural response, with principal attention devoted to the transient
responses of structures which are subjected to transient external loads such
as those arising from gusts, blast, impact, etc.; simple-harmonic vibratory
response is of secondary interest. Explicitly excluded from consideration is
the "short time" or "early time" response which is often called "material re-
sponse", and which pertains to the nature, propagation, and effects of intense
stress waves in the material as a result of severe impact or impulsive loads
{mechanical and/or thermomechanical) applied to the structure; roughly the
time span of interest for this type of response is of the order of from 1 to
100 microseconds. Only the "late time" response which is usually termed
"structural response" (in contrast with "material response") is discussed here;
such responses involve times of interest extending from time zero to 1 milli-
second or perhaps to several hundred milliseconds; this type of response per-
tains to the transient bending and/or stretching behavior of overall structures
or of structural components such as beams, rings, plates, shell panels, etc.
Furthermore, principal interest in this study centers upon transient structural
responses involving both large deformations and elastic-plastic material be-
havior. Sought is information on both the peak transient responses (deflections,
strains, and stresses at any selected point in the structure) together with the

time of occurrence of that peak and the permanent deformation condition of the

structure after subsidence of the externally-applied transient loading.

Accordingly, it is perhaps useful to review briefly the available analy-

sis methods for various categories of transient structural response problems.

Convenient categories are indicated in the following:
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Deflections Material Behavior

Lineax

+
Category _ Small Large Elastic Elastic~Plastic
I X
II X
IIX X
Iv x

Further, it is useful to tabulate, as follows, the principal available transient
< ++ . . . .

response analysis methods and to indicate which are applicable to each of the

problem categories cited above.

Applicable Structural
Response Category

Transient Response I 1x III v
Analysis Method* (SD~-LE} (LD-LE) (SD-EP) (LD-EP)
A. Normal Mode Method (NMM)

(Refs. 27-29, for example) X X
B. Assumed Mode Method (AMM)

1. (Refs. 27, 28) ' X

2. (Refs. 30,31) X

3. {Ref. 31) X

4. (Ref. 31) X
C. Conventional Lumped Parameter (CLP)

1. (Refs. 27, 28, 32) X

“2. (Refs. 33, 34) : X
3. (Refs. 33-35) X
4. (Refs. 33-35) . X

+This category includes strain hardening as well as strain-rate dependent and
temperature-dependent material behavior.

++50me special~purpose less comprehensive methods are included in a separate
brief discussion later.

*Only typical references in each category are cited; the citation of a complete
bibliography is not intended. Also, note that there are many uncited references
in each category, for which only static responses are discussed; selected such
references are discussed at pertinent places later in the text.
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Applicable Structural
Response Category

Transient Response 1 1I III v
Analysis Method (sD-LE) (LD-LE) (SD-EP) (LD-EP)
D. PFinite Difference in Space and Time (FD)

1. (Refs. 2, 3, 36-41) X

2. (Ref. 42) X

3. (Same as under D.4) X

4. (Refs. 3, 43~60) X
E. Forward Integration in Space

with Finite Differences in Time

1. (Refs. 4, 5, 61-62) X

2. (Ref. 63) X

3. (No Refs.) fdd

4. (No Refs.) fadad
F. Finite Element in Space

with Finite Difference in Time

(FES-FDT)

1. (Refs. 64-73) X

2. (Refs. 74~76) X

3. {(Same as under F.4) X

4. (Refs. 77-78) X
G. Finite Element in both

Space and Time (FES-FET)

1. (Refs. 12, 79) X b *x fuad

In

addition one could have various combinations of the above.

For example, one

often hears speculation (Refs. 80 and 81, for example) concerning combining

finite difference and finite element procedures in space to take maximum ad-

vantage of the special merits of each method for appropriate parts of the struc-

ture (that is, use finite differences for smoothly-varying regions of the struc-

ture, and finite elements in regions of structural irregularities such as ir-

regular cutouts, etc.) =- in combination with an appropriate finite-difference

ke
Method applicable but not described explicitly in the literature.

+Only static problems are discussed.
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operator in time. However, a concrete illustration of this approach in the
open literature has not been found.

For small-displacement, linear-elastic structural behavior (Category I),
the governing equations are linear and hence the use of the normal mode ap-
proach together with solution superposition is an applicable and efficient
method of solution. Each of the other cited methods (B through G) may also be
employed for this problem category but these are often more laborious and less

attractive.

When large displacements are encountered but the material behavior is
still linear-~elastic (Category II), the governing equations become nonlinear.
In this case the "normal modes"” become amplitude-dependent; thus, the normal
mode method of analysis becomes impractical even if one approximates the be-
havior as being piecewise linear. For such cases, methods B through G may be

used.

On the other hand, for problems involving small-displacement, elastic~
plastic behavior (Category III), one can legitimately regard the system as re-
taining its original small-displacement linear-elastic identity insofar as
its normal modes are concerned (as identified by the mass and stiffness charac-
teristics of the structure). Plasticity effects may be taken intoc account as
equivalent plastic forces which are amplitude dependent. Hence, the NMM becomes
unwieldy since "solution superposition" is destroyed by the essential nonlinear
character of this type of problem. Accordingly, methods B, C, D, F, and G are
better suited for this Category III type of problem, with methods D and F most
widely employed.

Finally, Category IV poses the most severely nonlinear set of conditions --
both geometric nonlinearities and material nonlinearities are present. While
methods B, C, D, F, and G are all applicable to this type of problem, only the
finite~-difference method (FD: method D) has been highly developed for analyzing
this type of transient response problem (Refs. 3 and 43-60) =-- only Refs. 77
and 78 have reported the use of the finite-element method (FE: method F) for

this transient~response-problem category.

The finite-difference method is a very general and powerful method which
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has undergone more extensive development for each category (I, II, III, and
IV) of problems than any of the other methods mentioned -- much literature,
not cited here, exists for both static and transient response problems. 1In the

past 15 years, however, the finite-element method has undergone much develop-

ment for both static and transient response problems, especially those in

Category I, with successively lesser developments in categories II, III, and IV.

FPor the finite-element analysis of static problems in Category II (large-
deflection, linear-elastic), Turner et al. (Ref. 82) was the first to report,
and many extensions have since been reported. Among these, four general schemes

have emerged:

1. The first approach is based on establishing a linearized incre-
mental formulation; the load is applied incrementally. This
geometrically nonlinear problem is solved by carrying out a
re-evaluation of the element~stiffness matrix at each load
stage. This “"incremental change” in the stiffness matrix is

termed the "geometric stiffness matrix" (Refs. 83-88).

2. Schmit et al. (Ref. 89) has solved the geometrically nonlinear
problem by seeking the minimum of the total potential energy

function by a direct energy search procedure.

3. In the third approach, the governing equations are solved by
an iteration procedure such as the Newton-Raphson technique
(Refs. 90, 91).

4. Stricklin et al. (Refs. 92, 93) analyze this geometrically non-
linear problem by treating the large deflection terms as egquiva-
lent force terms which are derived from the pertinent energy ex-
pression in the variational formulation used; for those special
terms, a restricted assumed displacement field is used for the
finite-element analysis to avoid certain numerical difficulties.
This approach has also been extended to transient problems (see
Refs. 75-76); when an implicit finite-difference time operator
is used, iterative and/or approximating extrapolative procedures

are needed to take those terms into account.
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For the finite-element analysis of static problems in category III
(small-deflection, elastic-plastic), various investigations have been carried
out (for example, Refs. 94-99). Two means for treating material elastic-plastic

behavior were employed:

1. The method of initial strain (see Mendelson, Ref. 100).
The idea is to modify the load-deflection equations of
equilibrium so that the linear-elastic stiffness matrix
is employed throughout the elastic-plastic load-deflec-
tion range of interest, and plastic effects are taken
into account through the use of "effective plastic loading”
(Refs. 94-97).

2. The tangent modulus method. This method is based upon the

linearity of the incremental laws of plasticity, and deals

with this behavior in a piecewise linear fashion (Refs. 98,99).

The relative merits of these two approaches have been discussed by Marcal
(Ref. 101). '

In Refs. 102 and 103, for example, the finite-element method is discussed
for static problems in Category IV (both large~deflections and elastic-plastic
behavior). Also in Ref. 104, the finite~element equations of dynamic equilibrium
and an increment stiffness equation are derived; however, no transient response
predictions are reported. Reference 102 utilizes the initial strain concept
for including plastic behavior, while Refs. 103 and 104 employ the tangent
modulus approach; in all of these cases, a linearized increment formulation re-

sults.

Recently, Salus, Ip, and VanDerlinden (Ref. 77) have described the formu-

lation and application of a finite-element approach for predicting the large-

deflection elastic-plastic transient response behavior of beam-type structures.

The resulting predictions, for several examples reported, are in good agreement
with pertinent finite~difference predictions and experimental results. This
formulation is of the assumed displacement type but is not based upon variational
principles. Emphasizing the plastic part of the behavior, only linear displacement

fields are introduced for all of the displacements, and transverse shear
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deformation is included. While elastic, perfectly-plastic behavior is taken
into account, the effect of transverse shear on yielding and flow appears to

be accounted for only in an indirect fashion.

From the preceding brief review of the finite-element literature, it
is apparent that only limited finite-element developments have been reported
for Category IV transient response problems: involving both geometric non-
linearities (large deflections) and material nonlinearities (elastic-plastic
behavior). Accordingly, the present study is devoted to developing, evaluating,
and applying a finite-element variational method for analyzing the large-deflec-

tion elastic-plastic transient and permanent deformations of simple structures.

Finally, note should be made of a group of simpler but more restrictive
methods for estimating transient responses and/or permanent deformations of
structures; these include the "rigid-plastic" method and the "energy-absorption"
method. In the rigid-plastic method (Refs. 105-116), the elastic deformation
behavior is assumed to be negligibly small compared with that arising because
of plasticity. Using the concept of plastic hinges, the equations of motion
for a structure are derived for various levels of approximation for the kine-
matics of the system; the deflections may be small or large and the material
may be rigid-plastic, rigid-visco-plastic, and/or strain-rate dependent rigid-
plastic. Except for small displacements, the governing equations are nonlinear
and numerical solution methods must be used. Often with this method one ob-
tains reasonably good estimates of the permanent deformation; however, the
transient response is always rather badly in error: the peak deformation is
always under-estimated and the time to peak response is invariably too great.
For "trends and/or parametric studies" wherein trends rather than accurate
values are desired, the rigid-plastic approach is often useful. Various
"hound theorems"” have been developed (Refs. 117-122) to estimate upper bounds
and lower bounds on the deformations of impulsively loaded rigid-plastic and
elastic~plastic structures; these form useful supplements to the rigid-plastic

analyses.

The "energy absorption” method (Refs. 123-127) is used only to estimate
the permanent deformation of the structure; no transient response information

is obtained. In the energy-absorption approach, it is assumed that the primary
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type or pattern of inelastic deformation is known for the structure being
analyzed. Also, it is often assumed that the elastic energy stored in the de-
formed structure is negligible compared with that absorbed by plastic work.
Accordingly, the permanent deformation is estimated by equating the plastic
work absorbed by the structure in deforming in the prescribed deformation
pattern to the total work done on the structure by the externally-applied loads.
Thus, for example, if a structure were loaded impulsively, the structure would
be given an initial kinetic energy which will, in general, would prodice both
rigid-body motion and structural deformations. The portion of this kinetic
energy which is available to produce structural deformations is then eqguated to
the plastic work absorbed by the structure =-- thus providing an estimate of the
permanent deformation state of the structure. The success of this method de-
pends upon reasonable a priori estimates of the primary pattern of deformation
occurring during the large-deformation response; for complex structures sub-
jected to arbitrary transient external loading, this a priori knowledge is
usually lacking. ¥For certain structural configurations and external loadings,
however, accumulated experimental evidence is available for making such de-
formation~pattern estimates. In such cases, very reasonable permanent deforma-
tion estimates result; Greenspon (Refs. 124-127) has made very effective use

of this excellent and efficient special-purpose approach.

The deficiencies of the rigid-plastic method and the energy absorption
method have been overcome by employing numerical methods such as the finite-
difference (FDS-FDT) method and the finite-element (FES-FDT) method. The
present investigation has as one of the main objectives, the extending of the
FES~FDT approach to analyze in an accurate and rigorous manner the large-
deformation elastic-plastic transient and permanent deformation of transiently
loaded simple structures. The intent is that, if desirable, the techniques
developed in this study for simple structures could be extended to analyze

more complex structures.

3.2 Variational Derivation of the Eguations of Motion

Utilizing the Finite-Element Approximation

As noted earlier, the finite-element approach is utilized in conjunction

with the Principle of Virtual Work and D'Alembert's Principle (in short:
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PVW-DAP) integrated over time’ between times t, and t, as in Hamilton's Principle
to obtain the eguations of motion for a continuum or structure which is permitted
to undergo large-deflection elastic-plastic transient deformations. In the
present investigation, the assumed displacement form of the finite-element method
is employed; when this is applied via PVW-DAP and the usual reductions are carried
out, the resulting equations of motion for an undamped system appear in the follow~

ing conventional form (Refs. 93, 94, 96, 128):
sl € *| *NL 2 .3
MITGT +[KItES = LF) ~{F 57

*fF;L} + {F;NL( Z’*)} \ (3.1)

where

q* (;*) are the global generalized displacements (accelera-
tions)

[M] is the mass matrix for the complete assembled dis-
cretized structure

[K] is the usual stiffness matrix (for linear elastic
small displacement behavior) of the complete
assembled discretized structure

{F=} is the vector of externally-applied (global de-

noted by a superscript *) loading

(F*?L(q*z,q*3)} represents a “"generalized loads" vector arising
from large deflections and is a function of
quadratic (q*z) and cubic (q*3) displacement
terms -- a nonlinear force contribution

{F*L} is a generalized loads vector arising from the
presence of plastic and/or thermal strains, and
is associated with the linear terms of the strain-

displacement relations.

+':Ehe use of the time integrated variational statement is optional; the use of the
PVW-DAP directly is sufficient since it holds at every instant of time.
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{F;NL(q*)} is a generalized loads vector of origin similar
to (F;L} but is associated with the nonlinear
terms of the strain-displacement relations.
Alternatively, by employing the finite element assumed-displacement ap-
proach in conjunction with the PVW~DAP but by carrying out the reduction pro-
cess differently, a computationally superior set of equations of motion is ob-

tained. These "improved formulation" equations appear in the following form:

(MI{3" + (P} + [HI{F}={F"} |

where the guantities [M], {g*}, {q*}, and {F*} retain the meanings given follow-
ing Eq. 3.1. However, {P} can be shown to represent not only [Kl{g*} of Eq. 3.1
but also some plastic behavior contributions. Also the term [H]{g*} represents
"generalized loads" arising from both large deflections and plastic (and/or
thermal) strains.

It is shown in Subsection 3.3.4 and in Section 5 that the improved formu-
lation represented by Eq. 3.2 is much more efficient for a given solution accur-

acy than is the conventional (Egq. 3.1) formulation.

The improved formulation and the conventional formulation are developed
in detail in Subsections 3.2.1 and 3.2.2, respectively in order to illustrate

their similarities and differences.

3.2.1 Improved Formulation

In the finite-element-analysis method, the entire domain of the continuum
is subdivided into a finite number of regions called "finite elements" or "dis-
crete elements", each having a finite number of "nodes" as control points (see
Fig. 3). These nodes are usually located at the boundary of each element but
may also be in the interior region of the element. The behavior of the actual
‘continuum which has an infinite number of degrees of freedom is thereby de-
scribed approximately in terms of a finite number of degrees of freedom at each
of the finite number of nodes since the generalized displacements within each
finite element is expressed in terms of (a) such variables called “generalized
degrees of freedom" which are defined at the node points in conjunction with

(b) suitably-selected interpolation functions to describe the distribution of
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each quantity throughout the interior of each finite element. Applying this
approach within the PVW-DAP framework results in a finite-sized system of
second~order ordinary differential equations. The unknowns in these equations
are the generalized degrees of freedom at each node of the complete assembled

discretized structure (or continuum).

Although many different kinds of finite-element models exist (that is,
displacement, equilibrium, hybrid, mixed, etc. -- see Ref. 7, for example),

- the assumed-displacement type of finite-element formulation or model has been

chosen for development to analyze the present class of nonlinear tranmsient
response problems. A parallel study, of course, could be carried out by using
perhaps each of the other types of finite-element models (see Appendix C) =--
and the relative merits of each could be assessed; such an undertaking, how-

ever, is beyond the intended scope of this study.

In the assumed-displacement~type of finite-element analysis, the gen-
eralized displacements constitute the primary variables. Hence, one selects
appropriate interpolation functions "anchored to" control-point values which
are the nodal generalized displacements. In choosing appropriate interpola-
tion functions for each finite element to be used in the assembled finite-
element array, one may take into account the following "sufficient conditions”
which will insure that the finite-element solution will converge to the exact

solution as the continuum is more and more finely subdivided [129, 1301:

1. Rigid-body modes of an element must be included; otherwise,
the equilibrium conditions of the element as a whole will
be violated.

2. Uniform strain states must be included; otherwise, it cannot
be assured that, as the mesh size is made finer, the strain
will converge to the true state of deformation.

3. The admissible conditions of compatibility should be satis-
fied along the interelement boundaries as well as within

the element.

Accordingly, these guidelines are followed in selecting interpolation

functions to represent continuous generalized displacements in the interior of
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each finite element. A detailed description of this selection is given in

Section 4 for an arbitrarily-~curved beam element.

Let it be assumed that the continuum or structure being analyzed has
been subdivided conceptually into N finite elements. Thus, one may write the
Principle of Virtual Work combined with D'Alembert's Principle integrated over
time from t, to t., Eg. 2.52a, as the sum of the contributions from finite

1 2
elements 1, 2, ... , N as follows:

t,

J

where variations 0 are permitted only for the displacements, consistent with

L _ _ +t =0
[.,Z:« (86U -dW, -6 K.)] d o
1

. . z +
the displacement constraints for all times except at tl and t2 and where for

any element n:

SU, =[] s, 4V,
vﬂ

(3.3a)
sw, = f75y 4V, +[[ 6y dA
v :
| (3.3b)
5;<,,=m9oﬂm? av,
v,
(3.3c)

+ . .
At times tl and tz,

and hence the displacements at times t1 and t

the configuration of the system is regarded as being known

, axre not subject to variation.
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In Egs. 3.3 through 3.3c, Vh is the volume of the nth discrete element and An

is the portion of the surface or boundary area of element n on which the surface

traction T7 is prescribed. Both Vh and Ah pertain to the initial undeformed
configuration. The summation, I, extends over the "N" elements of the continuum.
The other quantities have been defined following Eq. 2.52a.

Let {v} represent the displacement field which consists of the components
of the displacement vector expressed with respect to the undeformed base vector
system of the coordinates EJ (see Fig. 1). One chooses for each element an

assumed displacement field of the form:

fvj:[U(g*)]f}S} (3.4)

where [U(EJ)J is the matrix of appropriately assumed interpolation functions
expressed in the coordinates £7 of a generic point within the element, and {8}
represents a set of undetermined independent parameters which are functions of

time only.

It follows that the nodal generalized degrees of freedom which are the
nodal generalized displacements, {g}, are defined in terms of the local coordi-
nate system of each element and can be obtained by substituting the coordinates

of the nodal points into Eq. 3.4. Accordingly, one may obtain

{‘5}= [A]{ﬁﬁ (3.5)

.If one takes the same number of displacement parameters as the nodal generalized
displacements, the transformation matrix [A] is a square matrix. By inverting
Eg. 3.5, one has

(g = [A]" {4

and Egq. 3.4 becomes

fvi=(Ush) (ATHg) =[N]Hg) e
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where

(N)=[UEh) [A]

Because [U(EJ)] and [A]-l are a priori chosen functions expressed in the EJ

coordinate only, they are not subject to variation; hence,

{6v]= [N]M%} (3.8)

Also, the time derivative of Eg. 3.7 becomes

{{/} = [N]{’B—ﬁ | (3.9)

By using Egs. 2.9 and 3.7, one may obtain the corresponding strain Yij
at any point in the element as a function of position and the nodal generalized

displacements, as follows:
{ a
Yz‘i:LD"iJ i%} T2 LE {D“"j LD?J f%) (3.10)
It follows that
XY{?-:LDA?‘J{S%}‘P L34 {Daif 1 DF 115 4]

where D, ., D_. ,
ij’ Tai

which include both small and large deflection effects and which may be ex-

{3.11)

and D? are the appropriate associated differential operators

pressed symbolically in the form*

LD’(?J = _ZLL Ni,j + Ni,i_]
| Dpia =L Na,id

LDJ

44 = LN?]‘J

{3.12)

Employing Egs. 3.8 through 3.12, Eg. 3.3 becomes

*
Explicit examples are given in Section 4.
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t

{

-@/[N]p v, {{[N] TidA.)

—EN' LJ?J/{{[N] Po[N]ant‘?H
Vi

/

[Pty (//f fQ'leS"ian”"(ﬁ{DaiJ(LD;JS&dV” 't

(3.13)

where subscript B is used to signify that the [N] are evaluated along the ele~-

ment boundaries.

in more compact form, Eq. 3.13 may be written as
t, N :
(20 (ph + [R5 1£])

“‘nZ:ch?_j [m]?%} Jat=0

P +
where the following quantities are evaluated for each finite element :

/(f i} S7d V.
[h]= /([ LDJS"dv

+The evaluation of S ij is discussed in Subsection 3.3.2.
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(3.14a)

(3.14b)



£} _—-/V[[[pr.,.ff} a Vv, +£[ INTTT A e

[mj= f\f/f [ NJT)Oo [N]dV, (3.144)

Since the element nodal generalized displacements {q} for different ele-
ments are not completely independent, hence, a transformation is required to
relate the element nodal displacements to a column of independent global

(master) displacements for the discrete-element assembly, as follows:

“">£N} = [T11¢%

(3.15)

where q, are the element generalized coordinates in the local coordinate
system, {q*} are the complete set of "master" generalized displacements in-
cluding all node points of the complete assembled discretized structure, re-
ferred to the global coordinate system. The quantity [J] includes the effect
of transferring from local coordinates for each individual element to global
reference coordinates for the system as a whole. When the coordinate trans-
formation is not required (that is, when the element generalized displacements

are already in the same direction as the global generalized displacements), [J]
is a simple Boolean matrix.

t * * *
LOlesFY (P THIIES -FT)
- 15§51 IMI{$%]dt =0

(3.16)
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where

ij = (:”T fi", f.?-, ”’“.fu} (3.16a)

(H] [J]T h h2 (J] (3.16b)

Ry

~

T

“~

(J1{f £ ----. fu} (3.16c)
(J17 [F' me (T] (3.16d)

~

]

(F}
(M]

M

Integrating the last term which appears under the integral sign of Eq. 3.16 by
parts and using the fact that the virtual generalized displacements vanish at

((e0gs APy g M) a0

Since the virtual global {(master) generalized displacements {8q*} are inde-
pendent and arbitrary at each instant of time, the following equation of

dynamic equilibrium results from Eg. 3.17:
(M) {§ ~{Py+ [HHFI={F) (s.10

Given a set of initial conditions {q*}, {;*}, and {F} at t = 0, and the proper
boundary conditions, the system of second-order differential equations repre-
sented by Eg. 3.18, may be solved in a step-by-step timewise fashion by using,
for example, the finite-difference scheme. Further aspects of the solution

process are noted in Subsection 3.3.

Equation 3.18 represents the "improved formulation" form of the equa-

tions of dynamic equilibrium.

3.2.2 Conventional Formulation

In order to make clear the source of the "apparent differences" between

the improved formuiation (Egs. 3.2 or 3.18) and the conventional formulation
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represented by Eq. 3.1, a parallel derivation of the latter is presented in
the following. 1In fact, the derivations are identical up to and including
Eqs. 3.13 and 3.14 through 3.14e. For the conventional assumed-displacement
formulation, one proceeds to express the stresses in terms of the displace-
ments via the stress-strain relations and the strain~displacement relations.
That is, only the terms represented by Egs. 3.14a and 3.14b undergo a further
reduction by using the follow;ng stress-strain relation:

S‘z E? (Vg — Vk,) | (3.19)

where Yil represents the components of the total plastic strain. Next, ex-
pressing the total strain Y, , in terms of the generalized displacements {q}
via Eq. 3.10, Egs. 3.l14a and 3.14b may be rewritten as:

4} = gf Dy} 5TV,
zf]f{Dﬂ-AE""u( 1 {g) gD D gl =Y )V,
V,
- [k]igf-1F3)-
and (multiplying Eq. 3.14b by {g})z

[h]{% m m LD Jsluv {%}

(3.20a)

[[[ w LD J E‘l (LD 4 ?j-f-—-l.%.lf }LDX_HS?}
V” ’“ka Vi {2}
- {//J[;_Lj _ ]SJC';L}

(3.20b)
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where

[I(] =ﬂf {th} Ei;k! LDggd dVa (3.20¢)
Va

(3.204)

“ 5‘?}:'6/[ (0, E7( g 1D LPRI gD 4,
] gf {17‘7} E ijk]?:( d V" | (3.20e)

{’SC“L}=—.[[J{Q,§LD;‘JE‘""’(L 1185 +3 L | B D118 d V. {3

lj 2
v” (3.20£)

- g ET L anigy L,
Vi

and where superscripts L and NL refer to linear and nonlinear terms, respectively.
Also note that the subscript "p" has been applied to f;' and fgL to denote the
presence especially of plastic strain but this can also refer to the presence

of other "initial strains" such as thermal strains.

Substituting Eqs. 3.20a and 3.20b into Eq. 3.14, one obtains

f‘(ﬁ—ﬁwk”% e b b))
—%ﬁ?-ifmx‘g—}]d-t:o | o

where {f} and [m] are defined as previously stated, and
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fre)=1%g1 x"'f}
‘/ﬁ 1 EX G R Pl {8) a

'ff[ ) E7UD g 2 ROV 15

$3.22)

Then, transforming the element nocdal displacements {gq} to independent global
displacements {gq*} of the discrete-element assembly as described previously,
Eg. 3.21 can be rewritten as

[L%J((K]{‘ﬂ fF*uL} F‘j F*NLj Fi+M)E))at=0, ,,

where

(K] = [J]T {~£§5 } [J} (3.23a)
{F:;L}= [JJT{f;Lf , f;z, T ’,.%Lu (3.23b)
,( Ty L L L
{F'PL}: (3 iif" fﬂ’ - ’f”} (3.23¢c)
F“‘L} (77 ffL, f;Lz,"“-f;Lu}
’ (3.234)
SFY = LITHS, £, - 4}
. T om, ' (3.23e)
[(M] = 7] l e }UJ
N (3.23f£)
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Since the variations [ 8g*Jcan be independent and arbitrary, the follow-

ing conventional form of the equilibrium equations is obtained:

IMGI KIS =IF T +{F g ) +{Fy s ~(FYS

(3.24)

3.3 Timewise Solution of the Governing Equations

In order to obtain the timewise solution of a set of equations of
dynamic equilibrium such as Eq. 3.1 or Eg. 3.2, one may resort to analytical
techniques or numerical techniques depending upon the mathematical (and/or

physical) nature of the problem.

For small-deflection linear-elastic behavior, for example, one may re-
cast these equations into normal mode form and solve the resulting equations
of motion analytically, mode by mode if the forcing functions are modally un-
coupled or are properly sequentially coupled. Superposition of the forced
response of each mode then provides the total response of the system. Alterna-
tively, if desired, one may solve these equations (Eq. 3.1 or 3.2 in their

present generalized coordinate form) timewise by using a finite-difference

numerical procedure whereby one obtains a recurrence equation which provides

a solution step-by-step in finite-time increments.

Of these two methods, if the dynamic system is linear and is subjected
to a transient forcing function which excites mainly the lower frequency modes
of the system, it is frequently more convenient and efficient to use the
normal mode approach. However, if the stiffness matrix (and/or the mass matrix)
varies with time as in the present class of nonlinear problems, the normal modes
also vary in time; hence, the normal mode approach becomes impractical. In such
cases, the direct finite difference approach appears to be the only feasible
method developed to date. Accordingly, the numerical finite~difference method
is employed in the present study for solving equations of motion like Egq. 3.1
or Eg. 3.2.

In particular, the central-difference finite-difference time operator
is employed for purposes of illustrating the solution process for the improved

and for the conventional formulation in Subsections 3.3.1 and 3.3.2, respectively.
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Then the comparative storage and computing requirements of these two formulations
are discussed in Subsection 3.3.3. Next, since a wide variety of timewise finite-
difference operators or methods has been developed, a brief discussion of the ad-
vantages and disadvantages of some of these methods is given in Subsection 3.3.4 -—
leading to the selection of the central-difference method for principal use in

the present study.

Finally, it should be noted that a somewhat different approach termed
"the finite element method in space and time™ has been developed (Refs. 12, 79).
In this method, the initial value problem is handled as a boundéry value prob-
lem with the given initial conditions treated as prescribed boundary conditions.
By using a procedure similar to that used in the discretization of only the
space domain {(as described in previous subsections), the whole domain (both
time and space) of interest is discretized into a finite number of discrete
domains each having a finite number of nodes. At each node a finite number of
degrees of freedom is permitted. Then, suitable interpolation functions, which
are both time and space dependent, are selected throughout the interior of each
discrete domain. By applying this approach within the framework of the time
integrated PVW-D'Alembert variational statement results in a set of simultane~-
ous algebraic equations in the space and time degrees of freedom. Depending
upon the type of interpolation function used (especially for the time domain),
one may obtain sets of eguations corresponding to the use of many of the con-
ventional finite-difference time operators, as well as a variety of other sets
of simultaneous algebraic equations. In general, improwed convergence and
calculation stability will be observed as the entire space and/or time domain

is more and more finely subdivided.

3.3.1 Solution Process

As indicated earlier, the eguations of motion (Egs. 3.1 or 3.18 and
Eg. 3.2 or Eg. 3.24) are to be solved at a Sequence of instants in time At
apart by employing the following central-difference finite~difference approxi-

mation for the acceleration am ‘at any instant t :
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v . -2 + -1 2
z_z 3’ml ?MZ ?m +O(4t)
m (at)
(3.25a).
Also, one may approximate the velocity ém at time tm by
. - -1 2
Fn = Frt “Fmo peat)®
2 (at)
(3.25b)

Now note that at any time instant tm, Eg. 3.24 for the conventional
formulation may be written exactly as
»NL

MY 159+ TKLEFS, = TP R R LR,

All guantities in Eq. 3.26 except [M] and [K] change with time (i.e., [M] =
[M]l g L. = [M]m; K] = [K]l = .. = [K]m). Assuming that all quantities in
Eq. 3.26 except‘for {&*}m are known at time tm’ one can solve Eg. 3.26 to
obtain {&*}m. Since one has already obtained the solution for {gq*} at all
earlier time instants (that is, {q*}m, {q*}m__l, etc.), one can determine
{g*} m+) PProximately from Eq. 3.25a as:
s %
{ %4} = 1; Z"*} (At)z+2 { 3*}”‘ - i 3" }m—l (3.27)
. m—+4 m

where all quantities on the right~hand side of Eq. 3.27 are known. Thus,
Eq. 3.27 gives an explicit evaluation for the generalized displacements at
time ¢ in terms of known information at times t,oand t

™+l 1
Egs. 3.25a and 3.25bh are known as explicit finite~difference operators.

Accordingly,

Similarly, Eq. 3.24 for the improved formulation may be written at
time t_ as
m
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[MJt§} + {P} ~[HL 141 = {F}, .28

In Eg. 3.28, all quantities except [M] change, in general, with time. If the
solution has been obtained for earlier instants in time, one may compute
{&*}m from Eq. 3.28 and then use Eq. 3.27 to obtain {q*}m+1.

Assuming that at t = 0, the structure is at a known condition such as
{q*}o = {0} and {c.;*}o = {a}, one can readily obtain {q*}l from
2
at)

9] =ig i et 187 Frowt)’

(3.29)
since {F*}o is prescribed and all other quantities are known.

In the timewise step-by-step solution procedure involving large-deflec-
tion elastic-plastic transient responses via the spatial finite-element pro-
cedure described in Subsection 3.2 (from which Egs. 3.18 and 3.24 resulted),
certain quantities in the governing egquations change with time and hence must
be re-evaluated, in general, at each instant in time. For example, for the
improved formulation, Eg. 3.18 or 3.28, it is necessary at time tm to evaluate
{p}m and [h] by using Egs. 3.14a and 3.14b for each finite element -- the
"assembly" of thisg information then provides {P}m and [H]m via Egs- 3.16a and
3.16b, respectively. Similarly, for the conventional formulation, one must
evaluate {fZL}m, (f;}m, and {fgL}m from Egs. 3.22, 3.20e, and 3.209, respec-

tively, for each finite element -- the assembly of this information then pro-
. NL L NL .

vides {F; }m, {r; }m, and {F; }m via Eqs. 3.23b, 3.23c, and 3.23d, respec-

tively.

It is seen that the evaluation of {p} ,(nl , {2, (£¥1, ana (£}

, m m qg'm p'm P m
involves volume integrals of certain quantities. For a structure undergoing
large-deflection elastic-plastic behavior, it is impractical to evaluate these
volume integrals analytically; instead, it is convenient and practical to per-
fqrm this integration numerically. Among the various numerical integration
{or guadrature) methods, Gaussian quadrature (Ref. 131) appears to be the most
efficient for a given accuracy. Accordingly, Gaussian quadrature is employed

herein -- this requires that the stresses and strains be evaluated at a
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selected finite number of Gaussian stations or points over the "spanwise" and

depthwise region of each finite element.

Another ingredient which is common to both the improved formulation and
the conventional formulation is the solution for {'q'*}m at each instant of time

tm via Eq. 3.28 and Eg. 3.26, respectively. These equations are of the form:

[M] fX(t)}m = {b(t)jm for m=0,1,2,3,---- (3.30)
where _

M1 is a known banded positive definite symmetric
matrix (the mass matrix for the restrained or
unrestrained structure, whichever case is be-~
ing treated)

{x(e)} is a vector of unknowns which must be de-
termined by solving Eq. 3.30

{b(v) }m is is a known vector (representing all terms

except [M] {c’i*}m in Eq. 3.26 or 3.28)

In principle, one can always form the inverse matrix i.,'M]'-l and pre-multiply
Eq. 3.30 by [Ml™" to obtain
- - -!
M1 [M] {xm}m = [M] {b(t;}m

which results in the solution:
-1
J ’“t'}m =[M] fb(t)}.., (3.31)

since [M]-l M] = [1I] where [I] is the unit diagonal matrix. However, it has
been found that independent of the number of time instants at which one wishes
to solve Eq. 3.30 such a procedure is not as efficient as is the Choleski
method (Ref. 132).

Briefly, the Choleski method involwves factoring the matrix [M] to form
a lower triangular matrix [L] and an upper triangular matrix (which is the
transpose of the former) such that [M] = [L] [L]T where [L]T is the transpose
of [L]. Thus, Eg. 3.30 may be rewritten as

[LI[LY {xvf = {bw} .32
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Next, form an intermediate matrix {y}m which is defined as
_ T l
bl}m = [L] {x(ﬁlm (3.33)

From Egs. 3.32 and 3.33, it follows that

(L] { Y},,,: f b(t)},,‘ (3.34)

At each time instant, one solves Eq. 3.34 for {y}m very readily because [L] is
a lower triangular matrix. One then solves Eq. 3.33 for {x}m very rapidly also
by algebraic back-substitution. *

In Subsections 3.3.1.1 and 3.3.1.2, the principal steps involved in the
timewise solution of, respectively, (a) Eq. 3.28 for the improved formulation
and (b) Eq. 3.26 for the conventional formulation through the use of the ex-
plicit central-difference finite-difference operator (Egs. 3.25a, 3.25b, and/or
3.25¢c) are described briefly. This description is intended not only to point
out the salient features of the solution but also to make clear the nature and
extent of the similarities* and differences* between the improwved and the

conventional formulation.

3.3.1.1 Improved Formulation

The structure is represented by an assemblage of a finite number of
discrete elements (also called finite elements), and the geometric properties
of each element are defined so as to approximate the actual geometry of the
structure as closely as desired and/or feasible. The mechanical properties of
the structural material are assumed to be known as a function of temperatures
and strain rate. The structure is assumed to be subjected to externally-
applied loads which are prescribed in both space (over the surface and/or
throughout the volume of the structure) and time. The equations of motion,
Eg. 3.18, to be solved according to the improved formulation are restated here

for convenience:

(MJ139 + 1Py +[HI{g4 = {FY

)
These aspects are then summarized in Subsection 3.3.3.
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Starting from a set of given initial conditions at time t = to = 0 on
the generalized displacements ({g*} = {0}, for example) and the generalized
velocities {&}0, one can solve Eg. 3.28 for {a;}o at time t  and then employ
Eq. 3.29 to compute {q*%. A slightly different but similar procedure is then
used to advance the solution in successive time increments At. The process in=-
volved in using the finite-element method and the present timewise solution

procedure follows (see the information flow chart of Fig. 4a):

Step 1l: Construct the mass matrix {m] for each finite element and then
assemble these contributions according to Eg. 3.23f to form the mass
matrix [M].for the complete assembled discretized structure. This
[M] represents the "final" mass matrix if the structure has none of
its generalized displacements constrained (that is, held equal to zero,
for example); however, if such constraints exist, one forms a reduced
or constrained mass matrix (and, in fact, a reduced set of the equations
of motion) by deleting the rows and columns of [M] associated with those

generalized displacements which are prescribed to be zero.

Next, this constrained mass matrix is factorized to consist of a lower
triangular matrix [L] and an upper triangular matrix [L]T according to

the Choleski scheme: -
[M]= “—][L] _ (3.35)

Since [M] does not change in value with time as the transient structural
response proceeds, one needs to determine [L] and [L]T only once ~- these

quantities need not be re-evaluated at each time step of the calculation.

Step 2: The prescribed externally-applied transient forces can be em-
ployed to calculate the generalized applied forces {f} acting on each
discrete element at each time instant tm of interest. These, in turn,
can be assembled according to Eg. 3.16¢c to form the assembled applied-
loads vector {F*} for the complete assembled discretized structure.

Step 3: Assuming that at zero time (t = 0), the generalized displace-
ments {q*}o = 0, the generalized velocities are nonzero {é*}o = {a}, and
that nonzero external forces {F*}o are present. In this case, Egqg. 3.18

becones
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[M] {IZ"‘}O = f F¥}o (3.36)

[LILY 47, = {FY,

from which one can calculate {&*}o by using the earlier-described Choleski

scheme. Then from Eg. 3. 29 one obtains

{Af}; - (At) %} *+(at) 3’} ' (3.37)

where
* — _ bt S
o, =138, - 187,
f Z.—*}o = { a} = prescribed initial generalized
velocities (3.38a)
Also,

{3‘*}, = ‘S$¥}o +€AF}1 (3.39)

For this case, however, it has been assumed that {q*}o = {0}. Thus the dis-

placement configuration {q*}l at time tl = to + At is known.

Step 4: Knowing the generalized nodal displacement increments
{Aq*}l S {q*}l - {q*}o ana the generalized nodal displacements {q*}l
at time tl, one knows also the unstarred individual element quantities
{Aq}l and {q}l via Eq. 3.15. Hence, one can calculate the strain in-
cxement (Ay,.). developed from time to to t

ij’ 1 1
(or point) required over and depthwise through each finite element

at every Gaussian station

from Eg. 3.10:

2Yi )y = Yag)y = (Vog ),
J{Az_j‘ +L%J’f j,_D" A;} LA;J }LD 144 } (3.40)
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With a knowledge of (a)‘the stresses at to = t1 - At, and (b) the strain

increment (AYij) , one can determine the stress increments (AS™?)

1
ij
5t

1 and

at time tl at each Gaussian station by using the

pertinent elastic~plastic stress-strain relations, including the .

the stresses (S

yvield condition and flow rule (this matter is discussed in detail in
Subsection 3.3.2).

Step 5: Next, one can calculate {p}l and [h], for each individual
finite element by using Eqs. 3.14a and 3.14b, respectively. Assembly
of this information according to Eqs. 3.16a and 3.16b, respectively,
provides {P}l and [H],. Since the prescribed generalized force vec-
tor {F*}l is available from known {f}l information, the equation of

motion, Eg. 3.18, at time instant tl becomes :

[M]f?:*}l={F¥},_{P},_[H]f{%¥}l (3.41)

In the interest of minimizing computer storage and the number of
manipulations, one first forms for each individual element {bn}l =
({£} - {p} - [n] {q})l. Then one forms the right-hand side vector
of Eq. 3.41 by

L_J]T{—&J ,,l?.z, """ wa”j: (3.42)

For clarity of discussion, however, the form of the equation repre-

sented by Eqg. 3.41 is used here.

Step 6: Since the right-hand side of Eq. 3.41 is now known, one can use
the Choleski scheme to solve the following equation for the accelera-

tion {&*}1;

[LIILT$8% = ({Fy-{PS - [HI ")),

(3.42a)

Step 7: With {&*}l now known, one can calculate the generalized displace-

ment increment {Aq*}2 from Eq. 3.25a as

{A;¥}2 — %A;*}j +(A't)z {'?-4‘}1 (3.42b)
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" where

fAfi = {24§2 - {3'4(}1 (3.43a)
f‘?"‘k; = 1‘7’¥}. - f?‘}., (3.43b)

Thus, from Eq. 3.43a one has

o, = 1g, 157
fe%, = 1§71, 12} ], (3.44)
The process then proceeds cyclically from Step 4 onwards for as many time

steps as desired.

. For conciseness, the selection of a pertinent time increment size At

is discussed in Subsection 5.3.

3.3.1.2 Conventional Formulation

For convenience, the equations of motion which are to be solved in the

conventional formulation (Eq. 3.24) are repeated here:
. « " «NL . L - *yl
(M1} IKIEgS = Py ~{Fg s ~1F3 ) ~1F) 5.2

The solution process for Eq. 3.24 (see Fig. 4b) is very similar to that just
described for the improved formulation except for some modifications in
Steps 1, 4, 5, and 6. To avoid needless repetition, only these modifications

are described here.

Modifications to Step l: 1In addition to forming and factoring [M], one

must form the stiffness matrix [k] for each element and then assemble
this information according to Eg. 3.23a to form [K] for the complete
assembled discretized structure. Note that [M] and [K] need to be
formed only once ~- they do not change as the transient structural
response proceeds in time. As in the case of [M], if displacement
constraints are present in the problem being analyzed, one must

form a “"constrained” or "reduced” stiffness matrix for the entire

assembled discretized structure.
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Modifications to Step 4: 1In addition to requiring the determination and

storage of stress increments and stresses at each Gaussian station,
one is required now to determine and store also the plastic strain
increments and plastic strains at each Gaussian station at each time

instant.

Modifications to Step 5: Because of the presence of large deflections
and elastxc—plastlc effects, one must calculate {fNL}l, {fL} and

{f } for each finite element by performing numerically the volume
zntegrals indicated by Eqs. 3.22, 3.20e, and 3.20g, respectively.
The assembly of this information according to Eqs. 3.23b through
3.23d is then accomplished to form {F* }l' {F*l ? , and {F* ” }

Here again the actual operations are done more compactly than thls

description implies. ‘

Modifications to Step 6: Now at time tl all information needed to
write Eq. 3.24 is available:

(LI5S, = IRU S+ (FS T+ tF 3P0

Note that the forming of the right-hand side (RHS) of Eg. 3.45
requires the multiplication of [Kl by {q*}l; then this “"force

vector"” is added to the remaining terms of the RHS force vector.
Thus one needs to have both [L] and [K] stored for use.

Otherwise the timewise solution process for the conventional formu-
lation proceeds in the same fashion as that described for the im~

proved formulation.

3.3.2 Evaiuation of Stress Increments, Stresses, Plastic

Strain Increments, and Plastic Strains®

In the present subsection, the calculation procedure for the determina-
tion of stress increments and stresses at any station (such as Gaussian, for

example) in each element is described. Because the "mechanical sublayer model”

Py
This procedure applies for both the conventional and the improved formulation.
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is adopted in the present analysis, the only constitutive relation considered
is that for a homogeneous, initially isotropic, elastic, perfectly-plastic
strain-rate dependent solid; strain hardening is automatically accommodated by
the mechanical sublayer model.

A convenient way to compute the stress component increments and stress

components at time t = {(m+l) At, as discussed in Refs. 46 and 48 will be

m+l
employed; it is assumed that all stresses and strains are known at time t. .
One begins by assuming that the strain increment (A‘Y m+1' from time t to

“time t as calculated by Eq. 3.40, is entirely elast:.c, and a trial (over—

+1
script T) value of stress increment is calculated from the relation’:
E ry VY k £
= = )+ = (A ;
‘S Jmet [+y [(A)’) 2n+| -2Y ( yk?mé‘?J (3.46)
where K
4 A
AY;- =G (4Y;) (3.462)
Hence, the trial stresses at time t el 2F€ given by
T R £ T .
(S5 ) mer = (S;d * (257 Do (3.47)

Then a check process is performed by substituting this trial value of the
stress into the Mises~Hencky yield function, Eg. 2.79, to determine whether or
not the trial stress state lies inside the yield surface; thus one may write
g =2 ((5)),., SN 58k )-2a

S l 7 £ et kw7 3 Uy (3.48)
where cy is the appropriate known uniaxial yield stress. Also, it should be
recalled that the MJ.ses-Hencky yield function is expressed in Eq. 2.68 in terms
of ’tJ where ‘t = f_ SJ.

1f °m+1 X 0, the trial stress state lies within the elastic domain
bounded by the yield surface. Therefore, for this time step there has been no
plastic flow and the incremental deformation can only be elastic. Hence, the

actual stress (S;.') 1l is equal to the trial stress; thus

. T‘.
(5; )m,' = (Sf Doat (3.49)

+Such calculations are carried out for each layer of the mechanical sublayer model.
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and, the plastic strain state is

b, b
( Yi' et = (7;- ) (3.50)

However, if Q;;l > 0, the trial stress state lies outside the yield surface
(i.e., in the undefined region). Therefore, the trial assumption that the
entire strain increment in an elastic-~strain increment is not valid. Plastic
flow has occurred within this time step and the actual stress state must lie
on the yield surface according to the theory of perfect plasticity. Then,
the calculation proceeds as follows.

The total strain increment can be decomposed into elastic and plastic
components b
. e . R
A —_ 4 + (47Yy"

N = A . -
(AYa ). ( Yi et 7 Joe (3.51)

The stress increment is related to the elastic component of the strain
increment by the relation

. _ E e‘. )] ek i
(45;- ),.m— TTf[AY1' T izy Ayk 5?]"'*’ (3.52)
and the actual stress is
» 3 4'
(5;'),"1 = (S; I * (437' e 3-53)

Since the material is assumed to be incompressible with regard to plasticity, it
. Sh 3
follows that Aﬁi = 0 (or&¢ ; = 0: spherical component of the incremental plastic

strain). Then from Eg. 3.51 one has
44

: b, ' ‘
€ . _ X - 4 = (AY?* -(ay?
(8Y 5 )yt ™ Y., (4)/1, et = ¢ 71 s~ Y1 e (3.54)
and
’ k
Cky = (aYk) -(aYk) = (aY])
(AYk - (Ayk)mﬂ k met kmed (3.55)

Substituting Egs. 3.54 and 3.55 into Eq. 3.52, results in
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E S % ko :Df:‘.
(AS .«»‘Fr—f[“y{ *2p Tk 57’ - AY;‘ Jm: (3.56)
where A'!{,;' is given, in general, by the plastic flow rule, Eqg. 2.82, as
D# A‘ — pd A‘ S~
: AYT' N S]‘ A (3.57)

where ’}‘b is a real nonnegative constant which will be calculated later.
D,
The stress S;' determines the direction (or relative proportions) of the

plastic stra:.n J.ncram.ent. These directions will vary, over the time interval
At from (S ) to (SJ) el 25 2 result of continually straining. However, ggrri
computat:.onal convenxz;t?nce, t.herc-ieviatoric component of the trial stress (S j)m+l
which lies between (S;)m and (S;)m +1 will be used to approximate the correct

direction.+ Thus, Eqg. 3.56 becomes

i k A ey
(4 57),,4.1 p+y( Y IZV 5 l (3.58)

Further, combining with Eq. 3.46, one has

i - . DTA. *
(AS; )mﬂ = (‘AS; )m-rl_ ( 57 )m-ri A“""' (3.59}
vwhere
E ~
7\:-1»1 = :7 7\”“.]

Then, the actual stress at time tm+1 is

. ¢ R TL. DT‘. «*
(5,; )m’, =( 57)’" * (A*S‘;')msvl: ( 51' )mﬂ— (57'),,,“ At (3.60)

The plastic strain at time tm+1

. ' ? D?A' A
(YA-),.Z(Y;')M‘*(AY»)')»M (7) +(‘S ) o P (3.61)

is given by

tm
*
The quantities l +1 and %m-l—l in Egs. 3.60 and 3.61 can be determined
from the fact that (sj)mﬂ. must satisfy the yield condition:

*Alternate approximations could be used (see Refs. 133 and 134, for example).
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‘tljéw,=—gr-[(5 Do ( S,l ,,,,,"”‘(Sk) ]_32_53220 (3.62)

®*
Substituting Eq. 3.60 into Eg. 3.62 and solving for Am+1' one obtains the

physically valid value:
* C

Pmri T BA]BAC (2.63)

27T, oT - | DTk 2
A= (5?'),“,' (SZ)MQ.; ‘3(Sk)m¢‘

where

D | Tk 2Tk
B = (S ),,,,, (S )mf' . ?\(Sk)n"" (Sk)m--’ ,
T T . T | T, 2 2 2
c=g & . ( S;'L*l(sj ),,,,,"3' 5:)’", 3 2 6;' (3.63a)

The preceding discussion has pertained to the use of elastic, perfectly-
plastic rate-independent material whose yield stress is cy E'oo. However, if
the yield stress is rate dependent, the same procedure applies except that the
yield stress UY in Eq. 3.48 is the strain-rate dependent yield stress which is
given approximgtely by Eq. 2.87 as

g, = g [1+ IDI?] (2.87)

where Uo is the static uniaxial yield stress, D and p are material constants,
and € is the uniaxial strain rate. For the three-dimensional problem, it is
assumed that € of Eq. 2.87 may be replaced by the second invariant of the devi-

atoric strain-rate tensor. Thus, this equivalent strain rate is given by

£ j {77 VT “”(Yk)] (3.64)

where the strain-rate components Y {and/or Y ) are given by Y = (AY )/ (At) .
Other alternatives for € have been proposed (see Refs. 46, 133 134).

It should be noted that in the solution procedure for large-deflection

elastic-plastic transient responses, the tracing of the stv-:s history is

67



required for both the conventional formulation, Egq. 3.1, and the improved forma-
tion, Eq. 3.2, because of the nature of the elastic-plastic theory used. How-
ever, in addition to the stress history, the tracing of the plastic strain
history is also required for the conventional formulation but not for the im~
proved formulation. This may result in the saving of computer storage, if the
improved formulation is used. Further discussion of this will be given in the
next subsection.

3.3.3 Comparison of Storage and Computing Requirements'for

the Improved versus the Conventional Formulation -

From the solution process discussed in Subsections 3.3.1 and 3.3.2, it
is clear that the storage/computing reguired are less for the improved formula-
tion (I-method, for short) than for the conventional formulation (C-method).

By comparing the conventional formulation, Eq. 3.1, with the improved formula-
tion, Eqg. 3.2, it is seen that the storage of both the assembled mass matrix
and the assembled stiffness matrix are required by the C~method but only the
assembled mass matrix is required by the I-method. Also at each time step,
the matrix multiplication [K]{g*} is needed for the C-method but not for the
I-method.

Further, as was mentioned before, because the structure undergoes large-
deflection elastic-plastic behavior, Gaussian integration is employed to evalu-
ate {p} and [h] in the I-method; hence, the storage of the stress history at
every Gaussian station in each discrete element is required by the I-method.

On the other hand, if the C-method is used and Gaussian integration is also
employed to evaluate {fﬁL}, {f?} and {fgL}, then, in addition to the storage
of the stress history, the storage of the plastic strain history at every
Gaussian station in each discrete element is also required. As for the com-
puter operations, at each time step, three matrices {fgL}, and {f;}. and {£'F}
need to be evaluated for each discrete element, if the C-method is used. But
only two matrices: {p} and [h] (or {p} and [h]1{g}) need to be evaluated for

each discrete element, if the I-method is employed.

Based on the above storage and operation considerations, it may be con-
cluded that the I-method is more efficient and simpler than the C-method. This
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conclusion is substantiated by the computing experience discussed in Section 5

for various illustrative examples.

3.3.4 Selection of a Temporal Finite-Difference Operator

For the timewise numerical solution of undamped linear dynamic structural
problems, many finite-difference operators have been explored to assess their
attributes and shortcomings. Some schemes are stable no matter how large the
time increment At is chosen to be -~ and hence are termed "unconditionally
stable"; others are unstable for At larger than some critical value -- and
thus are termed‘"conditionally stable”. Some introduce (unintentionally) arti-
ficial or false damping whereas others do not exhibit this undesirable feature.
All of these methods, however, usually* produée a phase-shift error in the pre-
dicted response, depending upon the size of the finite At used -- some schemes
exhibit more phase-shift error than others for a given At. A concise tabula-
tion of some features of the more commonly-used varieties of this method is
given on the next page (Refs. 132, 135~142) together with some examples of

users of each method for linear and/or nonlinear transient response predictions.

The criteria for stability of each of these common methods have been
established for linear transient response problems (Refs. 143-151). These
studies have derived the At conditions under which exponential round-off error
growth will result. For smaller At values, this type of error growth will not
appear, and a "stable" calculation is said to result. O'Brien et al. [143],
Leech et al. {146, 147, 148], Johnson ([149], Nickell [150], and Krieg [151]
have illustrated this type of analysis and behavior. Nickell's study [150] is
especially extensive, treating the 3-point central-difference method, the
Newmark f-method, the Wilson averaging method, and the Gurtin averaging method.

It should be noted (Ref. 48, for example) that one can readily construct
m-point forward-difference, central-difference, or backward-difference opera~

tors by Taylor series representation of the accelerations X and/or velocities x

*An exception has been noted in Ref. 146 wherein the 3-point central-difference
formula was used to solve the one-dimensional wave equation. When At was chosen
such that (At)/(Ax) = 1, a solution which was exact in both amplitude and phase
was obtained.
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in terms of displacement information at m instants in time; the truncation
error of each approximation thus selected may be readily identified, and de-
pends upon the number (m, such as 1, 2, 3, 4, etc.) of time instants used.
Further by using the methods of Refs. 143, 145, 148, and/or 150, it can readily

be shown ‘that: (1) all forward-difference operators are unconditionally un-

stable, (2) all central difference operators are conditionally stable (a criti-

cal At exists beyond which error blowup will occur), and (3) all backward-

difference operators are unconditionally stable (i.e., stable for all At). The

Houbolt method is a four-point implicit backward-difference method (that is, at
n-1’ Xp.pr and x _.); this
method accordingly is unconditionally stable [149]. Note that all of these

time n, §n and xn are expressed in terms of xn, X

implicit methods cited in the tabulation on page 70 are unconditionally stable
except for type I2(b) ~~ a version of the Newmark S-method. Methods I2
through I5 were not constructed from the above-described Taylor's stress approxi-

mation =-- somewhat different intuitive and/or rational procedures were used.

Note that all of the implicit methods except the B = 1/4 version of
Newmark's B-method introduce false damping. The latter method and the 3-point
central-difference method noted in the tabular summary do not introduce false
damping. In Newmark's B-method, for example, the amount of false damping de-
pends upon the value of B used; Newmark suggests (a) choosing B = 1/12 if one
seeks high prediction accuracy for an extended period of response for a struc-
ture with small actual damping or (b) choosing 8 = 1/6 if one is interested in
only a few cycles of response =-- the implication being that the error introduced

by false damping would be acceptably small for many engineering purposes.

While round~off error instability is avoided by all of the unconditiocnally
stable methods (permitting one to use as large a At as one wishes), the forcing
function in a given problem may have severe spatial and temporal variations such
that one must use a fairly small At in order to follow and identify the severe
peaks, etc. in the structural response. Perhaps a At of some chosen fraction of the
period of the highest significantly-excited mode should be used —-- provided that
one can make a rational estimate of this situation. In such cases, the feature
of unconditional stability may not be as much of an advantage over a conditionally

stable method as one might think at first sight. However, for transient loadings
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which excite only the lowest few modes of the structure, the "larger At" per-
mitted by the unconditionally stable methods compared with the "stringently
small At" permitted by the 3-point central-difference conditionally stable
method can be clearly advantageous.

Although one can construct finite-difference operators of the implicit
type or of the explicit type having truncation errors as small as one wishes
by using information at time stations (n,n-1l, n-2, n-3, ... ) or (n+l, n, n-1,
n-2, n~-3, ... ), respectively, it is evident that one pays a price in the
necessity of storing this information in order to march the solﬁtion ahead in
time. Further, for large-deflection problems in#olving elastic~plastic be~
havior, the use of an explicit operator circumvents the iterative type of
calculation (or extrapolation) for the equivalent generalized loads required when
an implicit operator is used. These considerations indicate that one should
choose an explicit operator whose accuracy vs. storage tradeoff is most bene-
ficial. In view of its simplicity, accuracy, lack of false damping, and mini-
mal storage required, the 3-point explicit central-difference operator has

been chosen for principal use in this study; studies to define an “optimum”

operator of this type have not been carried out.

Although the criteria for stability of each of these common methods have
been established for linear transient response problems (Refs. 143-151), no
similar assessment is known to have been made when these methods are applied
to nonlinear structural response problems involving large deflections and in-
elastic material behavior. Various of these methods, howgver, have been
applied to such problems ~- with At values chosen in conformity with the estab-
lished stability and/or convergence criteria for their use on linear problems,

or by numerical experimentation.

It has been demonstrated in the present study that the (a) Houbolt and
(b) Newmark (8 = 1/4) method both of which are unconditionally stable for linear
structural response problems, now both become conditionally stable for large-
deflection nonlinear responses whether the material behavior is linear elastic
or elastic-plastic (see Subsection 5.3.2); also the 3-point central-difference

method remains conditionally stable but the stability criterion becomes more
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severe (smaller At is required) than for linear problems. These results con-
firm similar findings by Stricklin [75] and McLaughlin [156]. Further dis-

cussion of this matter is given in Subsection 5.3.2.
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SECTION 4

FORMULATION FOR A CURVED EBEAM

4.1 Introduction

In Section 2, the equations which govern the large~deflection, elastic~
plastic dynamic responses of a general 3-dimensional continuum are described.
Section 3 presents the overall method of analysis. Based on the Principle of
Virtual Work and D'Alembert's Principle, the spatial finite~element approxima-
tion has been used to derive the eguations of dynamic equilibrium. Then, a
direct numerical integration scheme with an appropriate timewise finite-dif-

ference approximation is used to solve the resulting eguations of motion.

In the present section, the application of this approach is demonstrated
in detail for curved beamlike structures which undergo planar (two-dimensional)
deformation with or without the inclusion of transverse shear deformation ef-
fects. 1In the structural finite-element context, such configurations are

termed "one dimensional“.

An arbitrarily-curved beam element is described here. Its specializa~-
tion to represent simple circular ring and straight beam structural elements

is given in Appendix B.

The geometry of a curved-beam element is described in Subsection 4.2.
The formulation for a Bernoulli-Euler~type curved beam element is discussed in
Subsection 4.3, while Subsection 4.4 is devoted to a corresponding development
for a Timoshenko-type (shear deformable) curved beam element. Both small- and

large-deflection behavior are included.

4.2 Geometry Description for a Curved Beam Element

The geometry and nomenclature of a typical undeformed curved beam element
(Refs. 157 and 158) are shown in Fig. 5. The parametric equation of the beam's

centroidal axis on the planar surface can be expressed as

E=F;(7)=Y(7);+Z(7)E (4.1)
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where n is the length coordinate measured from node i along the centroidal axis

(meridian) and XYZ represent global reference Cartesian coordinates.

The unit tangent vector, ;, to the centroidal axis, and the unit normal

vector, n, are defined as

_ . _4F _ P
a i) = an , WETRK dy T T hdp? (4.2)

where i is the magnitude of the curvature vector da/dn, and the reciprocal of

U is known as the radius of curvature, R, and is taken positive when the center of

of curvature lies in the negative direction of n.

It is assumed that the slope, ¢, of the centroidal axis, which is the
angle between the unit tangent vector and the y-axis of the local reference
Cartesian coordinate system (x,y,z) may be approximated with sufficient accuracy

by a second-order polynomial in n as follows:

2
$(7) =b,+bn *b7 (4.3)

The constants bo, b., and b, can be determined from the known initial geometry

1 2
of the curved-beam element by requiring (1) the slopes of the idealized ap-
proximated beam element and the actual beam element to have the same slopes at
nodes i and i+l and (2) the ends to lie on the y-axis (i.e., z = 0 at both

ends). Thus

$p=7 =0) =% (4.4)

!

¢(7:}7j+| )

c#ifl (4.5)

./Z'ﬂ SIN CP dyl = 0 (4.6)

[+]

If ¢ is small, Eq. 4.6 may be approximated by

fm;' $ dn =0 4.7

(o]
Using Egqs. 4.3, 4.4, 4.5, and 4.7, one obtains
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‘bo = CPA\
"Z (¢i+| "'243;,' )
7&+l
3 dk*, + ¢, )
i

Accordingly, the radius of curvature, R, of the centroidal axis may be ex~

pressed as R = ! = —-—‘—-—-———-—-
—'.g?,% “(b,+26,7)

(4.8)

Consider the beam subjected to 2-dimensional deformation. A generic
point p in the beam element is displaced to a new position P. Its new position
vector, ﬁ, is given by
R =+ =V (4.9)
where T is the position vector to point p, v is the displacement vector which
is a function of (n,f) and [ is the distance of point p from the centroidal
axis along the unit outward normal, ;, direction. The displacement vector v

n o . .
may be written in terms of its components denoted by v and w in the direction
of a and n, respectively. Thus
. _— — i
— -~
=V T)ya + w ('?, T) n
v 7.3 (4.10)
and the displacement v(n,Z) and Gkn,C) may generally be expanded in power
series of [ by

~ ~ 2V (2,37 3
Vn.5)= v (7, 00+ G 5T g=o+z§ (3 ‘)S=°+0(g)

w ‘W (4.10a)
o~ o~ 2—— _!_.Z ?W 5
w7, 0) = w(7,o)+§(a§)§=0 +2§(2———z)§=o+o(§)

4.3 The Bernoulli-Euler-Type Curved Beam Element

4.3.1 Displacement Field

Let the Bernoulli-Euler hypothesis (Refs. 11 and 159, for example) that
the beam cross section which is perpendicular to the centroidal axis prior to

the deformation remains plane and perpendicular to the deformed centroidal locus
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after deformation, and also that it suffers no strain in the direction normal
to the centroidal axis be employed. Hence, let the displacement field 3,3 of
the beam, Eq. 4.10a,be approximated by the middle plane displacement v and w,
and the rotation ¥ as follows:

v, 8= V“Z"Q‘“'Z) . (4.11)
where
aw _ Y

w(}z)_ﬁ—ﬂ ' (4.11a)

The selection of a suitable interpolation function to represent each of
those displacements throughout each element is one of the principal concerns
in the construction of finite-element assemblage of the whole structure. It
has been shown in Ref. 160 that the inclusion of rigid-body-displacement modes
in the assumed displacement field of a cylindrical-shell element leads to a
better coarse mesh solution than if the rigid-body modes are excluded from the
assumed-displacement field for the linear-elastic static cylindrical shell prob~
lem. Also, it has been concluded in Ref. 161 that the use of a cubic polynomial
to express both the axial displacement v and the normal displacement w in the
circular ring element exhibits a marked improvement over the use of a linear
expression for v and a cubic expression for w; also, the former converges very -
rapidly to the exact linear elastic static solution. Based on these considera-
tions, two sets of assumed displacement functions for the present Bernoulli-Euler-
type curved beam element will be formulated in the present analysis: (1) both v
and w will be represented by cubic polynomials in N with rigid-body modes in-
cluded (the finite~element formulation from this expression will be denoted as a
CC, or cubic cubic, element) and (2) a linear expression in n for v and a cubic
expression in n for w, also with the rigid body modes taken into account (this is

termed the LC, or linear cubic element).

Assuming that the element is subjected to small amplitude rigid-body
translations VY and Vz' and rotation Qx with respect to the local reference
Cartesian coordinate system (x,y,z), the rigid-body displacement expressed along

the curvilinear directions ;} a of any point p(y,z) is given by
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fvL cos ¢ SiNg -'ZCOSCF'P)’SW‘P vy \
- \7 12
w ~SIN cos§ 0 z (4.12)
rigid body 1S $ ¢ zsiNd+ycose) | ;"
To account for the strain-inducing modes and the rigid-body modes, the
assumed displacement field for the CC element takes the form (Ref. 160):

vl _[cosé sing -zcosy+ysing 0 0 722 731124
{W?~ -SN® cosd  zewnd+yeosd 0 P 7P 0 0 ] lﬁ, a1
8

where Bl, 82, eee & 88 are parameters which will shortly be expressed in terms
of the eight selected generalized displacements of the element. In more com-
pact matrix form, Eg. 4.13 becomes
_ {al
{z%:} —{ UZ:;Z’] lf,J (4.13a)
The generalized displacements, termed {g}, are chosen to characterize the de-
formation state of the element, and are selected such that there are four de-

grees of freedom v, w, ¥, and v,n (= 9v/9n) at each node of the element:

-
12l = v MW Vpio Veer Wi Vi Vipied (4 g

Corresponding to the assumed displacement field, Eg. 4.13, one finds

V=2E-f=0 0 1 =Tk 29 37 -T% R oipl=iGls)

(4.15)
_ 2V _ §SIN® _cos¢ 2(-zcosPrySING) 2
Vp =37 LR TR 27 [ o027 37 1{g]
— § o1 (4.16)
=LGF\/,7_|)§J

The generalized nodal displacements, {q}, and the parameters, {B}, of the
assumed displacement field are related by a transformation matrix [A] which
may be obtained by substituting the coordinates of nodes i and i+l into 'Eqs.'
4.13, 4.15, and 4.16. Thus

tey =[A] i8]

gxl g8xg  8xi (4.17)

Because [A] is a square nonsingular matrix, one may write:
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{By = [A]"{g'} (4.18)

gx! 8«8 gxi
Substituting Eq. 4.18 into Eg. 4.13, one obtains

-1

H‘-Jl:[U”I’][A] { ,} (4.19)

2xl 2 %8 8+x8 Bz

Turning now to the LC formulation, the assumed displacement field takes
the form
fvi_[cosé snd -zcospryswdé 7 o o7]5
wl™ . 3015 (4.20)
“SIN® cos¢  zsing+ycosé o DT P A
(4

and the generalized nodal displacements now chosen to characterize the deforma-

Jp——

tion state of this IC element are defined to be v, w, and ¥ at each end of the

element. Thus

{%} SLOVe Wy Vo Vier  Wie VQHJTzfA]{ﬁ} (4.21)
§x! 6x6 6!

It should be noted that by the nature of the assumed displacement
finite-element variational principle used, the internal equilibrium equation as
well as the force boundary conditions are generally not satisfied everywhere
exactly by its solution, although the displacements obtained by this method are
usually a very good approximation. The effect of using more displacement modes
is to improve the satisfaction of the equilibrium condition inwthe interior of
each individual element and hence also the accuracy of the approximate solution.
However, the compatibility of the additicnal displacement mode, such as v,n
in Eq. 4.14, with neighboring elements is not necessarily required from the
point of view of defining and evaluating the variational argument in Eq. 3.3
because the strain depends only on the first derivative of v with respect to n,
as will be seen in the next subsection . For a static problem, the two gen-
eralized coordinates Vini and Vinisel
through the use of the static condensation process (Ref. 7), but a rational

of each element may be condensed out

condensation process has not yet been devised for the corresponding dynamic

problem. 1In the present CC-type element, the v,n will be treated as an
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independent generalized coordinate at each node of the finite—-element assemblage,

and the compatibility of v,n between neighboring elements is retained.

In the following, the CC-type assumed displacement field is employed in
conjunction with the strain-displacement relations to obtain the egquations of
dynamic equilibrium from the pertinent variation statement, Eq. 3.3. The
finite-element properties and the governing eguations for the LC-type assumed
displacement field may be derived in a similar manner, except that the corres-
ponding [Ul,  [A] ;3;5 ;
used symbolically in this section of the text are documented in Appendix B.

matrix should be used. The various matrices which are

4.3.2 Strain-Displacement Relations

Under the Bernoulli-Euler hypothesis, the only nonvanishing stress com-
ponent and corresponding strain component which need be introduced into the ap~
propriate beam theory are the axial stress 0 and axial strain, €. Also, let the
ratio of thickness to radius of curvature be negligible in comparison with unity.
The appropriate nonlinear strain-displacement relation may be expressed as
(Refs. 9 and 159):

£ = E, + g K

(4.22)
where v W l_ aw v )2
& =sm* R TZ5m TR
:—ﬂ. :——a—- LM_/ --—‘—/- (4.23)
K =-3m =~y 5% "R’
or in matrix form: . . N
’ |
.2 1 oy 4 TRl oL o2 v
Eo "'Lafz R—jl\::/) + ZLV W_’{é LRZ']J]SWj
27
= LB fuy + 5 cuai{BfiBsful
(Lo _2¢, v
K —L(RZ)? 272) 272 %W} = LB3J%‘U‘} (4.23a)

Combining Eg. 4.19 with Eq. 4.23a, one obtains

80



& = vPiafgy + Z'L3J (D) LD 1 {4
K = (Dyaig (4.24)

where

LDey = LBal [U”]’][A]" i=1.2,3

In the process of solution, it is necessary to evaluate the strain incre-

ment, Asi. from time ti— to time ti. Using Eqs. 3.40 and 4.24, the strain

1
increment is related to both the displacement and the displacement increment by
AE" = 4 804' + g a4 KA' (4.25)
where |
S L § - 1a2.} } A .
AEM':LD'-'{A;};; +LZJ4.1DL)LD2_J]A sA. 7 ZJAID‘ LDy Z'};.
(4.25a)
ARy = LDJJ {A;}A
(4.25b)

In Eq. 4.25a, {Aq}i is the generalized nodal displacement increment from time
ti-l to ti' which is computed directly from the equation of dynamic equilibrium
of the system, {q}i is the generalized nodal displacement at time ti and is
{q}i

with the other two terms, if the time increment step, At, is small. However,

= {q}i-l + {Aq}i. The last term in Eq. 4.25a is of higher order compared

this term can become significant for the case of a sufficiently large time incre-
ment step. Its effect will be discussed later in Section 5 in the context of

numerical examples.

It should be noted that the only nonlinear term retained in the strain-
displacement relations, Eq. 4.23, is due to the rotation of the centroidal axis.
This expression for the strain is suitable for the cases where the deflection is
laxrge compared with the thickness of the beam, but it is still small compared
with the spanwise (longitudinal) dimension of the beam. Otherwise, the follow-
ing more accurate displacement and strain-displacement relations should be
used (Ref. 9):
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3

v
-l
u

Vin) =T VR

(4.26)
W, T) = W)t x(p)
and
E = &, tC K (4.27)
where
= 2w _ v = 2X X
V=5 - R ., X =357 *R
_ av,w, ¥ X ww_v.2X ¥

2n R) (4.27a)

However, in the numerical examples carried out in the present analysis, only -
Egs. 4.l11 and 4.23 are used.

Also, it should be noted that the rigid-body displacements given by
Eg. 4.12 are only approximate because of the assumption that the amplitude of
the rigid-body rotation Qx is small; this displacement field yields zero
strain when applied in the strain-displacement relation given by Eg. 4.23 (or
Eq. 4.27) only for small deflections. If the element is subjected to large
amplitude rigid-body translations Vy, and \fz, and rotation ﬂx with respect to
the (x,y.z) coordinate system, then the correct rigid-body displacements ex-

pressed along the curvilinear direction ;.; of any point p(y,z) would be
{ Vl_l' cos ¢ smf#} {\/y ( +{ Acosd+BSING j

w) ~SING CoSP \/'Z -A siNnd +Bcos ¢ (4.28)

where

A =)/ COS,QX -z S‘N‘Qx -y
B y SINM, +z cos S, -z (4.28a)

These large amplitude rigid-body displacements expressed by Eg. 4.28, will re-

sult in the prediction of zero strain when the more accurate strain-displacement
relation Eq. 4.27 is used, but not when the approximate strain-displacement rela-

tion represented by Eg. 4.23 is applied. However, in the present analysis, the
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"simplified" strain-displacement relation Eq. 4.23 together with the small ampli-
tude rigid-body displacement modes represented by Eq. 4.12 are employed prin-
cipally because of the unwieldy nature of the expressions resulting from using
Eq. 4.27 together with an assumed displacement field which includes both the
proper deformations and the exact rigid-body displacements given by Eq. 4.28.

4.3.3 The Discrete-Element Property Matrices

Under the Bernoulli-Euler assumption, the consistent mass matrix of the
discrete element including both rotatory and translational inertia effects may

be obtained from the expression for the kinetic energy, KE' as follows:

Ko=x ([ ¥+way
Va

=7’@ o, [ (v-gv) s W ) d Y

(4.29)
or '
Kg ='2‘" :‘_ﬂl-‘} w vi[B] ;/v} an (4.29a)
‘ v
where
@b h 0 0
[ B ] = 0 ) P,B\h\ 0 ,
° ° ﬁ'ib'éh (4.29b)

and, b is the width, h is the thickness of the beam, and po is the mass density
per unit volume of the undeformed body.

With the assumption that the velocity field is of a form which is con-

sistent with the displacement function, Egqs. 4.13 and 4.15, one has

sVl _[ uo AL = [N {9
\WJ .--._Z.X.B fgﬁxlj N 3?8] gg%l}
v L thz)g (4.30)
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where

) " y
( =|-—- .28 [A
[Ns‘;?)] thfzg) Lg:{;

1
is consistent with Egs. 4.13, 4.15, and 4.18.

(4.30a)

Substituting Eg. 4.30 into Eq. 4.29%a, one obtains:

Ke= 7142 [NV BIINDI 43S o
KE’:_ZLL?'J [m]{ij - (4.31a)

where the consistent mass matrix [m] of the element is
7{4» T
[mj ——-(y] [N(?J][B][N('Z)] d7 (4.31b)

The element's consistent mass matrix defined by Eq. 4.3lb is symmetric
and positive definite, and is consistent (in the variational sense) with the
assumed displacement field. The resulting equations of motion cbtained by
using the consistent mass matrix will be a system of simultaneous {coupled)
second-order ordinary differential equations. 1In order to take advantage of
potential storage and computing efficiencies, another mass matrix called the
lumped (diagonal) mass matrix (Refs. 68, 73, 153, 162, 163) is often used in
dynamic analyses; the resulting equations of motion will be a system of de-
coupled second-order ordinary differential equations. The lumped element mass
matrix of the present beam element can be written as
- ol §- )
as '
g 0
(m] = p,bh 83

lumPeJ O(S‘
O éxs

o 3
| 05 | (4.32)



R " element size, o and § are constants, and taken to be a = 1/2,
§ = 1/24 (Ref. 162); other values also have been chosen for the constants o and 6,

where s = 1N

Ref. 73.However, further studies are needed to develop appropriate lumping for each
of the various types of selected criteria such as (a) by frequency matching in which
the lumped mass properties are chosen such that the lumped-mass system and the con~-
sistent-mass system have the same highest natural frequency (Ref. 73); (b) by stati-
cally-equivalent considerations wherein the lumped mass properties are chosen to be
statically equivalent to the actual mass distribution (Refs. 68, 153, 162, and 163),
etc. Also, some very useful information for this type of analysis is described in
Ref. 190 in which the rates of convergence of the mode shapes and frequencies by

the finite-element method using consistent- and lumped-mass formulations are
established.

The equivalent generalized nodal forces which correspond to or represent
the externally-applied loading can be obtained by placing the assumed displace-
ment field into the expression for the variation of the work of the externally-

applied loading:

SW = ((Fove R SWM© TV ) 4y
7(

(4.33)
where
F(t) = Fv(t);'+ Fw(t)ﬁ' is the applied time varying force per
' unit length
M(t) = M(t)T is the applied time-varying moment per
unit length.
Substituting the assumed displacement function, Egs. 4.13, 4.15, and
4.18 into Eq. 4.33

SW = LS;J (,7 [N(’Z’] l

= ngJ ]s.fl (4.34)

F} ,
Fw j 7

M

where

1{ _)(_ } { i N(yl)] Fw d }z = generalized nodal force

matrix for the element (4.34a)

The equivalent nodal force which corresponds to the internal axial stress,
0, also can be obtained by placing the assumed displacement field into the ex-

pression of the variation of the work of the axial stress:
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SU=[ffoseav = [Totersiodh

Substituting Eg. 4.24 into Eg. 4.35 and introducing the stress resultants for

the beam cross section

szfdA ) M:{(ggd/\ (4.36)
A A
where the integrations being taken over the cross section, A, of the beam ele~-

ment, L, is the internal force, and M is the internal bending moment of the

cross section, results in
sU = LEM{?‘( (2L~ (D} MMY +['77[ﬁ"< (DS 15147 14]]
= 1541 ( 1y ~ThILg))

(4.37)

where

tpy = f)i""(iD%L*st}M>d7

.

thy = (I (pfimsl)dy

(4.37a)

The integrations along the centroidal axis length of the beam element which
appear in {p} and (h] of Eq. 4.37a may.be performed numerically, for example,
by using the Gaussian guadrature scheme (see Ref. 131). The axial force L
and moment M at those spanwise integration stations will be described and
evaluated in theﬁnext subsection. Note that {p} and [h] are guantities perti-

nent to the improved formulation.

In the conventional formulation, the variation of the work of the axial

stress, 0U, is expressed in terms of displaéements, and the plasticity effects
are taken into account through the use of "effective plastic loading“. This

formulation will be described in the following:

By substituting the relation
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=E(£—E_ﬁ) =E(E.,“'§K’5ﬁ) (4.38)

into Eq. 4.35 one has
5U=ME(ea+gk—ef’)c58,+g5,'<)d\/,, (4.39)
n
Employing the strain-displacement relation, Eq. 4.24, Eg. 4.39 becomes

sU= L55J[77m({ }ELELDﬁf Dy E_"’Z.‘IBLI%J )dn {44

¢

+ LégK/ff £¢(in })Nﬁ/ﬂf—’Ei”{D,}LDMV,.{;}>

A ¢
SR [ Ebh (L33 {R, LR ig]) [Dfay
- (5 Ebh LD,J{Z} +7141{ D510, {2]) (D)1 D1 d7ig)

=U8p) (LRI - [ f, 0 -1 Fp 8- 155 )

f
(4.40)
where
(k] [ E“”-DJ +st§ “"ZﬁLD 1)dy (4.40a)
{‘f? /{{?‘ (Ei ‘”;EE f 5§)d\/,, (4.40b)
H;LJL:(( ;Z.ﬂ EiﬁEDzﬁLDzJ anfjj (4.40¢)
A )
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f-f%"} :—<[7;'Ebh (E‘L%J iDlj( LDZJ{;}){D,LOW
+ fy[:-ugbh (LD:ij-jt'*'z"LgJ;QJLLDzJ{;j ))(DZJ‘ LD,_;@{%) (4. 404}

In Egs. 4.40b and 4.40c, ef is the total plastic strain at the end of
the ith time step. Thus

- 4
?,ﬁ:i Ait‘ + 4L, (4.41)

4 m=|

and the integrations along the length of the beam element are also performed

numerically. The plastic strain increment, A4 Eip

P
i
wise integration stations will be described next.

, and the integration of the

total plastic strain € over the cross section, A, of the beam at those span-

4.3.4 Stress-Strain Relations

Because of nonlinear material behavior, although the strain variation
through the beam thickness, by the Bernoulli-~Euler hypothesis, is linear, the
variation of stress across the thickness may be nonlinear. For computational
convenience, the stresses are evaluated at selected Gaussian points across the
thickness, and the corresponding weighting factors are used in evaluating the
pertinent integrals by Gaussian quadrature. The strain-hardening behavior of
the material may be accounted for by using the mechanical sublayer model in
which the material at each Gaussian station is treated as consisting of equally~
strained sublayers of elastic, perfectly-plastic material, with each sublayer
having the same elastic modulus but an appropriately different yield stress,

as described in Appendix A.

It should be noted that within the framework of the Bernoulli-Euler
beam theory, although the transverse shear strain Y is zero, the transverse
shear stress T, is nonzero. With the presence of both axial stress O, and
transverse shear stress T, the Mises-Hencky yield function may be written as

2 2 2
¢ =0 +3T -0, =0

0 (4.42)

where Ook is the yield stress of the idealized elastic, perfectly-plastic kth

sublayer in the uniaxial-tension engineering stress-strain diagram (see
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Appendix A). The process presented in Subsection 3.3.2 of calculating stresses
and plastic strains will not function properly, if the yield function (Eg. 4.42)
is used. (Because in that process, the transverse shear stress T, should be
evaluated from a trial value of 1 by assuming that the AT arises from wholly-
elastic behavior of Ay, but Ay is always zero and hence T is also zero)}, To
avoid an unduly complicated analysis, and still achieve good accuracy, and also
because the transverse shear stress, T, often may be small compared with the
axial stress G, (Ref. 20), the following yield function is adopted for the
present Bernoulli-Euler-type beam
- 2 _ ¢ = 0

¢ =0 - Ou (4.43)
However, the yield function (Eg. 4.42) is used for the Timoshenko—-type beam
where both the axial and transverse shear stresses and strains are taken into

account; this will be described in the next subsection.

An illustration of the method of computing the axial stress and/or
plastic strain increment is presented as follows. One begins by knowing the
sublayer stress cjk,i—l 1 for the kth sublayer of the jth depthwise
Gaussian station, and the strain increment Ag, i at station j at time ti

r 4

to time ti). One then takes a

at time t,
1-

(that is, the strain increment from time €

trial value (superscript T) of O, which is computed by assuming an elastic

+ ]k,i
path = T
;= 0. o YEAE.
O;k:‘ Fk, 4 7t (4.44)
A check is then performed to see what the correct value of ojk i must be.
T <o T b
1= Ok ST, SOk then Oy =Gy o and A8y =0
-+
T — b _ k-0
If O}’k,( >O;k then 6}’1(,4' = O;k and Azﬂ‘,f‘ 1_.k"~E ok
T - b 0{T o+ 0,
If O;k,;{ <_0‘;k then O;k,[ = O;k and AE;’k,f 0
(4.45)

where E is Young's modulus.

This procedure is applied to all sublayers of each Gaussian station j;

+
It should be noted that the subscripts in quantities such as O , for example,

jk,i-1
represent only identifying labels, not tensor notation as used heretofore.
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having done this, the axial force and moment of the beam cross section can be

determined by

L =//0~dA -=},-2’l>—__(2‘_‘ 0k A;’k)
A
- L h — .
M ga'gdA-—bz %:;7(2:(' Gi.kAi,k) (4.46)

In a similar manner the integration of the plastic strain over the cross

section of the beam element can be determined by
P . P
([etaA=1h = (= e/, Ay)
A 7 k7 / (4.47)
4 =l h < 14
((te'dAd=b3 = 5. (2 &) A )
A 7 °1 % oTr
where b is the width and h is the thickness of the beam and Ajk is a combina-
tion of the mechanical sublayer weighting factor and the Gaussian weighting
factor wj' which is defined by
W
A,} __EJ_ (Ek—Ek*x) (4.48)
In Eq. 4.48, wj is the Gaussian weighting factor (Ref. 131) and
E: — OI - 614 '
k €k = €k (4.49)
is the kth slope of the polygonal approximate stress-strain diagram. It can
be verified that the relations .
( Z:,A : >/ = | and W.o, = : ;
v ik Wy 71 %Aiqu
are satisfied.

If desired, the sublayer yield stresses may be treated as strain-rate
dependent. Since the strain increment at the jth Gaussian station and hence
the strain rate is known at this stage of computation, then the rate-dependent
yield stress oyk of this kth sublayer at station j is

i
/5t 1%
o = o [ 1+ | 2ELE P

where D and p are empirically~determined constants for the material

(4.50)

and may, in general, be different for each sublayer.
cok is the stat;c uniaxial yield stress of the kth sublayer

at any jth Gaussian station
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4,4 The Timoshenko-Type Curved Beam Element

4.4.1 Displacement Field

In the previous subsection, the derivation of the beam element properties
is based on the Bernoulli-Euler hypothesis in which the transverse shear deforma-
tion is assumed to be zero. In the present subsection, the formulation for a
general curved beam element with nonzero transverse shear deformation taken
into account (termed a Timoshenko-type beam element) will be presented. How-
ever, the following assumptions (Ref. 159) are used: plane cross sections per-
pendicular to the undeformed centroidal axis remain plaﬁe and suffer no strain
in their plane, although they no longer remain perpendicular to the deformed

centroidal axis.

With these assumptions, the displacement field, including transverse
shear deformation of the beam may be specified by the middle plane displace-

ments and cross—section rotation, as follows:
Vo, 8) = vy +g 67
wn.g) = wap (4.51)

where v(n) = axial displacement of the middle plane
w(n) = transverse displacement
a(m)
g

rotation of the plane cross section about the x axis

normal distance from the centroidal axis (middle plane)

4.4.2 Strain-Displacement Relations

Neglecting the variation of the transverse shear strain across the
thickness of the beam, the expression for the engineering components of the

strain distribution may be written as
E(7,8) = 20(71+§K(7])
Y (R, 8) =, ()

(4.52)

where eo is the middle~plane axial strain
K 1is the curvature change

Yo is the transverse shear strain
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The strain-displacement relations of the curved-beam element may be

expressed as
2V w i W 2
= L + = + — (&= -
& =5 TR Tzl

- 29
K =5

Y, =(—§—g—-—;’;>+e

In this equation also, the only nonlinear term retained is due to the rotation

Wil
A<

(4.53)

of the centroidal axis about the x axis. Egquation 4.53 may be expressed in
matrix form as

| R Lo v
£ =137 R OJ{gV}*%LVWGJ{%lLRa? "-Jfév
0
= B iy} +-Z"L21J{BZ}LBZHE}
= o O __3__ v(:—. B —-(éL
K L o7 - E’j = L b5 { )
- 2 i - B yt
RE L R 27 - i‘é“! LB J (4.53a)

It should be noted that in the previous Bernoulli-Euler-type beam ele-
ment, the highest derivatives upon which the strain depends are the second
derivative of the transverse displacement, w, and the first derivative of in-
plane axial displacement, v. In order that the assumed displacement inter-
polation function be admissible in the variational argument of Eg. 3.3, it is
required that the assumed displacement function of w at least possess a second
derivative and v possess a first derivative; this means that the assumed dis-
placement field must generate continuous displacements and continuous normal
slopes at the interelement nodes. However, the inclusion of transverse shear
deformation reduces the order of the derivative regquirement and hence also the
the stringency of the compatibility imposed on the assumed displacement field,
because the strains depend only on the first derivative of displacements v,w

and the rotation 8. For -the variational argument of Eg. 3.3 to be defined,
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it is required that the assumed displacement field have at least a first deriva-
tive and provide continuous displacements and rotations at the interelement
nodes. Consequently, the simplest assumed displacement field for this Timoshenko-

type beam element with the rigid~body displacement modes included is

v] [cosd sing -zosd+ysiné p o o078

-1 Bl _
Wi=-SIN$  cosd zSINg+ycosd O 0 Ol = [UUZ’]?}B}
6 0 0 0 o 1 75

(4.54)

The generalizéd nodal displacements {q} are defined to be the three degrees of

freedor v, w, and 8 at each node of the element as follows:

T
{Z’& =1L AN We Og Viet W 6. | (4.55)
In a manner similar to that described in the previous subsection, one
may write
f%} = [A] {}3} (4.56)
and

ey ={wi = [UQI AT 1gf = [N £ s

It perhaps should be mentioned that by this linear interpolation function

(Eq. 4.54) of the displacement, the strain and moment representation will be
very crude unless the element size is kept small enough, since as can be seen

in this formulation, the bending strain is constant over each individual ele-
ment. In order to improve the strain representation, highei order displace-
ment interpolation functions and hence more degree of freedom (or internal
nodes) should be used (see Ref. 164). Further discussion of this matter is
given in Subsection 5.2.2. However, for the purpose of illustrating the cal-

culation procedure, the linear interpolation function is discussed here.
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Combining Eg. 4.57 with Eg. 4.53a results in
£, = LDy {44 + > RERATENES
< = 1.1:% d ‘{2}3

Y. =104 .sm
where k
1D, 1= (B IND] P=12,3. 4% (4 56
Also, the strain increments from time ti—l to tinme ti are given by
Jggz: = A“Eii -+ Q:AA Ko
{4.59)
‘A‘Y’g = A Yox
where
Ag“. =1 4 fA? }A. + L;jl. iDliL-DngA}L.
~7 12§ {nfLDatagls
AK( = LDS-] ;d?h{
2Yo = L%y ;A?}A. (4.5%a)

4.4.3 The Discrete~Element Property Matrices

The element mass matrix and the element generalized nodal forces can
be obtained following the same argument as in the previous subsection. Also,

in addition to L and M, the transverse shear force, S, of the cross section,
A, is given by

S=[fzdA
A

where T is the transverse shear stress.

(4.60)

Then, from the Principle of Virtual Displacements equation, Eq. 3.14,

one may obtain for the improved formulation:

208 (i LTI 1) =0 e
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where

% Rf 0
= 7) h ] d
ml= { IN'U[ Sk (NPT AT
12
(¢ T (F
f o= [ Nen)” SR
th} =[5 UDIL *(BIM ~{D§S a7
’](ﬂ
thy = /a fDZ%LDZJL 7 (4.61a)
Also, for the conventional formulation:
S g1 (g + Tk - 15 - 1,1 1 D0 e

where

AT ot EBR oo L6 D
[/(] . ) (iD,Jl:‘JLILDtJ +] ""Z‘ \_I%j ]D“JG’L)\L 4J)d7

{f;; =/[{7?‘,"‘(E£”fp,}+g Ez”{Dsg +ayhny) dV,
A t

NL(

F53=(ff," EePinfin g d vtg

NL(

(£ 3=/, Ebh (FLga {DfiBaig)) DYy
*[FEbh (1Pfg 743 D }@Jfﬂ?f i)

(4.62a)

Finally, one can recast Egs. 4.61 and 4.62 in terms of global generalized

displacements {g*} to obtain the corresponding equations of motion as described
in Subsection 3.2.
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4.4.4 Stress-Strain Relations

For this Timoshenko-type beam element with transverse shear deformation
included, the calculation of stresses and stress resultants for both normal

and transverse shear components is illustrated as follows.

One begins by knowing the sublayer normal stress cjk i-1 and transverse
r
shear stress Tjk j-1 8t time tia for the kth sublayer of the jth depthwise
r
Gaussian station (layer) and the jth layer normal and transverse shear strain

increments Aej i and ij i’ respectively, at time ti' The trial stresses are
r

»

calculated from the relatiaons

T
O;k’ i = G;k,i—l +E s Ej,i

T .
Tiks = Ty TG 4014

(4.63)

Then, the trial stresses are introduced into the Mises-Hencky yield function
éE'T T 2 T 2 2
.= . + g L) -
= (T ) 30T 0 - 0]

where E is Young's modulus of elasticity

(4.64)

G is shear modulus of elasticity
and ook is the yield stress of the idealized elastic perfectly-
plastic kth suhlayer.

T
1f ¢i < 0, the stress state lies within the yield surface, no plastic

flow occurs within this time step, and the actual stress increments arise from

wholly elastic behavior, then
T T

O;-k, R = Ujk,,& R fl;.k,,(. = ’Z; IA' (4.65)

t P N
&ﬂw' = ki , 71.,<’A~ = 71./(/‘._, (4.66)

1f, on the other hand @? > 0, plastic yielding has occurred. Then, the flow

}

rule, Eg. 2.82a gives the plastic strain increments as
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b T

A Efki" = 2 A 0'7_ ,A.
4 T

A Ypn = 6% Tk

(4.67)

and the actual stresses are
* T * T
Tk, v = ( [-An E) O}'k.i , T;-’k.i:“_'ah 5)7;-[:)&' (4.68)

where A* = 21 and can be solved from the requirement that the actual stress
state must be on the yield surface. Thus, the following condition must be

satisfied:
2

2 2
¢ =[( O;k,i) + 3 (Tik"-) - Ozk} =0 (4.69)

Substituting Eq. 4.68 into Egq. 4.69, one may solve for A* as follows:

* _ C

N B+ ‘/BZ‘AC: (4.70)
where
2 T 2 2 T 2
A=[E () +~276 (T, )
= T 2 T 2
B=[E (o,,) ~ 96 (T ]
T
C = §4’ : : (4.70a)

With A* obtained, the stress state at time ti and the plastic strain increment

from time ti-l to ti are known. This process must be carried out for each
layer (i.e., depthwise Gaussian station and sublayer), Once the stresses in
each layer and sublayer have been determined, the axial force, moment, and trans-

verse shear force of the cross section can be obtained by
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h
2 7k 1
= -b- S
M=bz 25, (0 Ay)
= h
S _b_z' ? (Z Tk A;k) (4.71)
and the integration of the plastic strain over the cross section can be ob-
tained by ﬁ
b Lk s (s
ggdA t,z%(%eﬂ(Aﬂ()
Pap =) b 1
gggd/] =b ,si;gi. (Z & Ak
14
g ’yf)d/\ = E%Z} (%— 71-;( A7-k) (4.72)

Then the equilibrium equation, Eg. 4.61 or Eg. 4.62, must be used next in the
calculation cycle to find the displacement or displacement increment of the

next time cycle, as discussed in Subsection 3.3.1.

98



SECTION 5

EVALUATION AND DISCUSSION

5.1 Introduction

In Section 4, the curved beam element, which may undergo large deflec-
tions and elastic-plastic strains, as well as deforming such as either to in-
clude or omit transverse shear deformation, has been developed for the dis-
placement variational model. The timewise numerical 3-point central-difference
finite-difference procedure is employed to solve the resulting system of coupled

second~order ordinary differential equations.

In order to evaluate the accuracy and versatility of the present finite-
element formulation and solution scheme, this analysis has been implemented in
a computer program and several numerical examples have been carried out. First,
in Subsection 5.2, comparisons are made between the present finite-element solu~

tions and known analytical solutions for small-deflection linear-elastic tran-

sient responses of mechanically-loaded beams. Next, in Subsection 5.3, the
present predictions are compared with those from available finite-difference
(both spatial and temporal) predictions and with experimental cbservations for

large-deflection, elastic~plastic transient responses of impulsively-loaded

beam and ring structures, and various features of the present method are

assessed.

5.2 Small-~Deflection Linear-Elastic Transient Responses
of Mechanically Loaded Beams

In order to check on the proper functioning and correctness of the
present analysis and computer program, the small-deflection linear-elastic
transient responses of beams have been analyzed first; the finite-element pre-
dictions have been compared with available analytical solutions. Two beam
problems have been studied: one pertains to Bernoulli-Euler (or Kirchhoff)
deformation behavior while the other includes a significant amount of transverse

shear deformation. These examples are discussed in the following.
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5.2.1 Small-Deflection Linear-Elastic. Responses of a Bean

with Bernoulli-~Euler-Type Deformation Behavior

A simply~supported beam is subjécted ﬁo a uniform lateral transient
loading over the whole span. The geometry, dimensions, material properties,
and transient-loading history are depicted in Fig. 6. The Bernoulli-Euler-
type small-deflection elastic beam element with a linear interpolation function
for the axial displacement v and a cubic interpolation function for the trans-
verse displacement, w, was employed; this element has been termed an ILC element
in Section 4. Because of symmetry, only one-half of the span of the beam was
modeled; five equal-length discrete elements were used in the attendant finite-
element analysis. The solution was obtained by using the 3-point central-differ-
ence timewise integration method with a time increment size of At = 4 usec which
satisfies the stability criterion, At :_(Z/wmax). for this method (see Ref. 148)
where wmax represents the largest natural frequency contained in the mathematical
model, [MI{g*} + [K}{g*} = 0 which approximates the actual linear elastic small

deflection structure.

A comparison of the mid-span transverse deflection response predicted by
using the present finite-~element scheme with the exact normal-mode solution is
shown in Fig. 6. It is seen that very good agreement between these solutions
is observed. It should be noted that for this small-deflection linear-elastic
straignt beam with Bernoulli-Euler deformation behavior: (1) the inplane
(axial) displacement is zero and (2) the selected assumed cubic displacement
function for the transverse displacement w is, in fact, identical with the 4
exact displacement field. Hence, the finite~element calculation which utilizes
the central-difference time integration method gives very accurate amplitude
and phase predictions for small-deflection linear-elastic behavior as long as

the time increment size used is small enough to satisfy the stability criterion.

5.2.2 Small-Deflection Linear-Elastic Transient Responses

of a Beam with Timoshenko-Type Deformation Behavior

The second example is selected to test the convergence of predictions
utilizing the various assumed displacement functions for the Timoshenko-type
beam element when it is applied to a small-deflection linear-elastic dynamic

system. Transverse shear deformation and rotatory inertia effects are included
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in the formulation. A free-free beam is subjected to an applied loading con-
centrated at the mid-span with a triangular pulse time history (this problem
has been analyzed in Ref. 165). Figure 7 gives the geometry and the dimension-

less parameters for this problem.

Because of symmetry, only a half-span of the beam was treated in the
finite-element solution. The Newmark constant average acceleration timewise
integration scheme+ (Y = 1/2, B = 1/4) with a dimensionless time increment
size AT = 0.0025 was used, where AT = At /EI/pbh /22. It should be recalled'
that this integration operator is unconditionally stable for linear (small-
deflection) elastic dynamic systems; however, too large a AT may cause some

phase shift from the correct behavior.

For this beam problem with a significant amount of transverse shear de-
formation, the following four types of assumed displacement fields (designated
as Tl through T4) have been tested (note that zero inplane displacementsVv are

involved ~~ v is ignored):

(T1l) Linear functions in § for both transverse displacement w, and

rotation O:

w = a, * a, &
(5.1a)
6 = a; + 4, E
The generalized coordinates {g} are selected such that there
are two degrees of freedom (w, 0) at each end node i and i+l
of the element:
T
§Z’} = L W.{' e/(.' : WA."'I 6}:""-’ (5.1b)
(T2) Cubic variation of w and linear variation of transverse
shear strain :
2 YES
_ . 2 3
W =4 +08, & *a¥ +aE
= W
=42 4 = a, +4
R 2E o 5 6§ (5.2a)

+ . :

.Thls operator rather than the 3-point central-difference operator was employed
in an attempt to use a larger AT than the latter permits, and thus reduce the
computing time.
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Three degrees of freedom (w, wa, 0) are selected at each end
node of the element and the generalized coordinates are:
{?j =L Wy W'Et B« Weet W i R ! 5
VE A+ e ] (5.2b)
The reason for choosing the linear function for the transverse
shearing strain (i.e., quadratic function of the rotations) is
that the bending effect dominates the transverse shearing ef-
fect when the element size is large, and the bending strains
are derivatives of the rotation. Accoraingly, this function
could represent thne strain energy of the element more accurately

for a large mesh size (Ref. 164).

(T3) The same assumed displacement functions as for T2 (i.e., with a

cubic variation of w and a linear variation of Y€ )} except that

z

the generalized coordinates are selected such that there are
two degrees of freedom (w, 0) at the two end nodes and at a

midpoint node of the element. Thus,

W =4, +0,E +05 E +d, &

Ygg — 45 + a, g (5.3a)

- T
?i} S L We B0 W, 6, Wa B8] (5.3
(T4) QuAdratic variation of w and linear variation of YCC:

w=d, ~a, % + 05 E°

(5.4a)
Yg= da T O E
Two degrees of freedom (w, §) at the two end nodes and one
aegree of freedom, w, at the midpoint node of the element aré
selected. The generalized coordinates are
-
Qg.j =L W¢ 8, W W, By (5.4b)
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Shown in Fig. 8 are the corresponding dimensionless transverse shear
force responses preuicted at tne quarter—-span station by using the four differ-
ent sets of assumed displacement functions (Tl tnrough T4) with various numbers
of discrete elements for the half span. Shown also are the "exact" modal solu-
tions of Ref. 165 based on the Timoshenko assumption for convenient comparison.
It is seen that the use of linear interpolation functions for both w and o (T1)
gives very crude coarse~mesh transverse shear force responses compared with that
from the modal solution. Whereas, predictions obtained by using tne higher-
order interpolation function (T2, T3, and T4) with a.coarse-mesh finite-
element array show better agreement with the moGal solution than the predictions
by using linear interpolation function (T1l). However, as the number .
of finite elements employed increases (the element size decreases), all four of
these interpolation-function predictions converge to the modal solution both
in pnase and in amplitude. If one bases the comparison on the total number of
degrees of freedom (unknowns) which were used in the finite-element solutions,
it is seen that, for a given number of unknowns, the predictions obtained by
using T2 or T4 type interpolation-function elements leads to a solution which
is closer to the modal solution than is the case if Tl or T3 type interpolation
function elements are employed. The reason for this comparative behavior is
that in the Tl type (linear) interpolation function, the strain and moment
representation over each element are very crude; whereas in T2, T3, and T4 type
interpolation function elements, the strain and moment representation is much
improved over tnat with the Tl type element. Also, by using T3 type elements,
the mesh size is relatively larger compared with that from using T2 or T4 type
elements if they have tne same number of degrees of freedom for the half-span
of the beam. Finally, it should be noted that the size of the finite elements
which provide good shear response agreement with the exact solution are such
that their (equal) length is less than the depth of the beam (see Fig. 8) ---
such a required modeling pertains to problems which include transverse shear

and rotary inertia.

It perhaps should be noted that under various loading conditions, slope
discontinuities along interelement boundaries are permitted when considering

the presence of trdnsverse shear deformations; thus, the T2 type element
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over-constrains tne continuity of slope at the interelement nodes. Based on
this consideration, it may be concluded tnat the T4 type assumed-displacement
function is the most efficient one and the T2 type assumed displacement func-
tion coumes next, when they are applied to beams witn transverse shear deforma-

tion benavior.

The finite-element predictions for the quarter-span moment responses and
tne midspan deflection responses are shown in Figs. 9 and 10, respectively.
The above-mentioned convergence behavior of the shear-force responses obtained
by employing the four types of assumed displacement functions are also observed

in both of tnese latter two figures for the moment and displacement responses.

This example illustrates that the linearly-varying (T1l) assumed displace-~
ment Timoshenko-type beam finite element can provide accurate transient response
predictions only if the element size is kept small enough. However, in order
to obtain more accurate coarse-mesh solutions, one would need (a) to employ
higher-order assumeu displacenent functions (T2, T3, T4) or (b) to use an

assuwuew stress nybrid finite-element model (Ref. 1G66).

5.3 Large-Deflection Elastic-Plastic Transient Responses

of Impulsively-Loaded Simple Structures

In order to evaluate the reliability and accuracy of the present finite-
element method for predicting large-deflection elastic-plastic transient re-
sponses of simple structures, the various features and options of the present
prediction method are examined in this subsection. Also, comparisons of the
presént predictions with other available finite-difference (both spatial and
temporal) predictions (Ref. 44) and with experimental observations (Refs. 44,

167 and 164) are made.

5.3.]1 g=xample Problems Analyzed

As examples with which the various features of the present finite-
element prediction method can best be illustrated, tne following three types of
problems have been analyzed; the geometries and the types of finite elements

employed are presented in Fig. 11 for reference convenience.
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(1) A straight beam of 6061~-T6 aluminum alloy is clamped at
each end and has dimensions: 1/8-in. thickness, l.2-in.
width and 10-in. span between supports. The beam is
loaded impulsively over a spanwise segment centered at
the midspan and covering a lengtn of 2 inches, as de-

picted in Fig. lla.

(2) A 6061-T6 aluminum alloy ring sector with a subtended
angle of 315° is clamped at each end and has dimensions:
2.935 in. mean radius, 0.123-in. tnickness, 1.197-in.
width. The clamped ring is loaded explosively over a
peripheral sector of 120° of its exterior, as shown in
Fig. llb.

(3) A free circular 6061-T6 aluminum alloy ring, 0.124-in.
thick, 1.195-in. wide, and 2.937 in. mean radius is
subjectea to severe explosive loading over a peripheral

sector of 120° of its exterior, as shown in Fig. llc.

As a matter of convenience for reducing the computer time and storage
required by the solution of these problems, these three examples were treated
as symmetrical problems. Taking account of the symmetry of the impulsive
loading, geometry, and boundary conditions, only half of each configuration

was modeled in all of the attendent discrete-element analyses.

5.3.2 Effects of Using Various Timewise Integration

Operators: Central~Difference Method, Houbolt's

Method, and Newmark's B-Method

‘ In this subsection, the numerical stability behavior of the timewise
integration operators: central-difference method, Houbolt's method and Newmark's
f~method (Y = 1/2, B = 1/4) when employed for the solution of large-deflection
elastic-plastic transient responses of tue impulsively loaded clamped beam will
be studied. The conventional finite-element formulation of the eguilibrium
equations is used, whexre the large-~deflection and elastic-plastic effects are
accounted for through the use of "equivalent generalized forces™ which are given

automatically frem the variational formulations.



To minimize the computer time for the structural response calculations,
one should use the largest permissible time increment which will avoid numeri-
cal instability (for example, roundoff error blowup or truncation error accumu-
lation) and still provide a reliable prediction. Unfortunately, for the
present nonlinear dynamic system, a reliable and validated criterion by which
the proper time-step size can be chosen a priori is not readily available for

any of these methods.

1f the 3-~point central-difference (timewise) method is used, as was
pointed out in Subsection 3.3.4, the judicious selection of the proper time
increment At can be guided by the stability criterion of a corresponding linear

dynamic system, AS < z/wmax' as an initial selection; numerical experimenta-
o f —

tion then subseguently can provide the suitably smaller At to insure stability
where Woax represents the largest natural frequency in the mathematical model,
(M1{g*} + [K1{g*} = 0, which approximates the actual (linear-elastic small-
deflection) structure. Thus, it would be very valuable to know wmax’ such that
tne “"suitable initial At" can be chosen immediately and hence reduce the amount
of subsequent numerical experimentation. Figure l2a presents Wax of the
clamped beam as a function of the number of elements per half span; the
Bernoulli-Euler-type LC beam element with a consistent mass matrix is used to
model the structure. The maximum w was obtained by an iteration process in

double precision applied to (see Art. 4.5 of Ref. 27):
-1

, wzi’j*j:[MJ [Kjéﬁ*} (5.5)
Also shown in Fig. l2a are the maximum frequencies of pure membrane behavior
and pure bending behavior (with or without including the rotatory inertia
effect). It is seen that the maximum frequencies of combined membrane and
bending benavicr are equal to the pure membrane maximum frequencies. when the
mesh size £, to thickness, h, ratio is large (g/h 3.4), and are equal to the
pure bending maximum fregquencies when the mesh size to thickness ratio is
small (e/h < 4). This is to be expected for the linear Bernoulli-Kirchhoff
beam system, because membrane and bending effects are decoupled. It is also

noticed that the rotatory inertia effect arising from the consistent mass

matrix can be significant when the mesh size is small, and the neglect of
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rotatory inertia by deleting those terms from the consistent mass matrix leads
to a maximum frequency higher than that obtained by including this rotatory

inertia effect (as seen in Fig. l2a).

It should be noted that simple analytical methods to estimate the upper
bound and the lower bound of mnax have been presented, for example in Ref. 162,
in texrms of the maximum eigenvalue of all the individual element matrices and

its associated eigenvector:
2 -
max (Y, )+ 57 % 4 [k,] § *}
; ,
I+ = xIm, ] {x "Jl

where max(vi) denotes the largest v2 of all the finite element and v2 is the

2
< max (Y, )

max (5.6)

maximum eigenvalue of the equation
2 - T L
2Em, ] {x§ = [k.J ix] (5.6a)

{x*} is the eigenvector of Eg. 5.6a for the element j,
which has max (vi),
and ! indicates summation over only the neighboring

elements of element j.

The element matrices [mn] and [kn] involve fewer degrees of freedom than
the assembled matrix [M] and [K], so it is relatively much easier to find the
element’'s maximum eigenwvalue than the wmax of the assembled matrix representing
the complete structure. However, the bounds may not be very sharp; also the
boundary conditions (which the cited "bound method" does not take into account)
and the nature of the problem will affect the W oax 35 shown in Fig. 12b where
the upper and lower bounds of the maximum frequencies of pure beam bending
behavior (by using consistent mass matrices from which are deleted the rotatory

inertia effect) are given by+ (Ref. 162):

EI . EI
1900 557 < whax € 8400557

(5.6b)

where 0 is the mass per unit length and € is the element length. In view of

.. . :
Similar bounds could be developed when one uses lumped mass matrices such as
those discussed in Subsection 4.3.3.
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the wide bounds given by these results and in order to reduce the effort in-
volved in subsequent numerical experimentation to determine a maximum permissible
At, the exact wmax has been evaluated in the present analysis; fortunately,

for the beam (or ring) problem, the total degrees of freedom are not too many

to be handled by the scheme represented by Eg. 5.5. However, for problems with
an enoxrmous number of degrees of freedom, one would perhaps need to resort to

the simple analytical bound methods to estimate the upper and lower bounds of

mmax; for such cases, the "bound scheme" may be more economical and efficient.

Now, turning to the large-deflection elastic-plastic transient response
predictions, the half-span of the beam is modeled by 10 elements and the time-
wise 3-point central-difference operator is used. The critical At, if based
on the stability criterion of a corresponding linear system would be
Atc2 = 2/wmax = 1.47 usec. Computational experiments have been carried out
using various time step sizes as shown in Fig. l13a to predict the midspan de-
flection responses. This clearly demonstrates the immediate divergence of the
predictions if At is only slightly greater than AtcR(At = 1.5 usec = 1.02 x Atcl);
reliable predictions are obtained if At < 0.99 x Atcl = 1.45 usec. Calculations
also have been carried out by using Houbolt's method and Newmark's method as
shown in Fig. 13b and 13c, respectively; it is observed for both of these
methods that for At values which are too large, the predicted response degrades
gradually but badly from the correct behavior. The critical At for reliable
predictions was found to lie between 6 and 8 usec for Houbolt's method and be-

tween 3 and 4 usec for Newmark's method.

In view of these results and those of Refs. 55, 75, and 156, it is con-
ceivable that the following situation may generally be considered to be true.
The introduction of material nonlinearity often decreases the highest natural
frequency of the system because the plastic pulse travels at a velocity which
is less than the elastic pulse velocity, but elastic response contributions
are still present and govern the allowable At. However, the geometric non-
linearity effect (large deflections) renders Houbolt's method and Newmark's
method no longer to be "unconditionally stable“.
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It should be remembered that for this beam problem the calculation of
strain increments from displacement increments and displacements, Eq. 4.25, at

any time tm is given by

(AE) = (4&), + T (ak),
where
— ( 24V IW aw, | w .2
(&), = (53 QR (ST 7 (B,

(5.7

The higher-order term 1/2(3Aw/37): has been included in the above calculations.
The predictions made by neglecting this term in the calculation of the strain
increment are shown in Figs. l4a, 14b, and l4c for the central-difference me-
thod, Houbolt's method, and Newmark's method, respectively. Comparing Fig. 14
with Fig. 13, it is seen that the neglecting of this higher-order term may de-
grade the long-time responses due to the accumulation of "errors of approxi-
mation” introduced at each time step, especially for larger At as can be seen
more prominently in the predictions obtained by Houbolt's method and Newmark's
method. Accordiﬁgly, it is recommended that the exact strain-increment equa-
tion (Eq. 4.25) including all the linear and nonlinear terms in the displace-
ments and the displacement increments should be used; fortunately

the computer time and storage increase is insignificant.

It should be noted that Houbolt's method and Newmark's method are im-
plicit in nature; that is, the generalized nodal forces (which may be due to
large~deflections and elastic-plastic effects) at each time séep depend on the
‘displacements (or stress, strain) at that time step, which remain to be de-
.termined; thus, iteration or extrapolation is needed at each time step. Linear
extrapolation (see Ref. 75, for example) by using the generalized nodal forces
at two previous time steps is employed in the present calculations. The central-
difference method on the other hand is explicit in nature and thus no iteration

or extrapolation is required at each time step. The storage of the displacements
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at three previous time steps is required by Houbolt's method but information
only at two previous time steps is needed when the 3-point central-difference
method or Newmark's method is used. Also, for At values which are too large,
the very gradual degradation of the responses predicted by using Houbolt's
method or Newmark's method gives no warning to the analyst that this degrada-
tion may be happening. However, the central-difference method usually exhibits
a violent degradation of response when At is too large, thus warning the analyst

of this state of affairs.

Based on these considerations+, only the timewise central-difference
method is employed in the following example calculations. Hcﬁever, it should
be mentioned that based on the present information, it is still far from con-
clusive as to whether any one timewise operator is superior to the others for

analyzing nonlinear transient response problems of the present type.

5.3.3 Comparison of the Conventional pormulation Versus the

Improved Formulation for the Dynamic Equilibrium Egquations

By using the timewise 3~point central~difference method, comparisons
have been made of the responses of the impulsively-loaded clamped beam cb-
tained by employing the conventional finite-element formulation with those ob~-
tained by using the improved finite element formulation of dynamic equilibrium.
Complete agreement of these predictions is obserwved in Fig. 15 for both the
large~deflection elastic-plastic transient responses and the small deflection
linear-elastic transient responses. However, as was discussed in Subsection 3.3,
the improved formulation shows significant simplification in form over the con-~
ventional formulation for solving large-deflection elastic-plastic dynamic equi-
librium behavior. Also, the computer storage and manipulations required for the
improved formulation are less than those required for the conventional formula-
tion. For this problem, it has been found that when using the conventional

‘formulation, the computer time is about 24% more than that required when the

+Also in order to make convenient comparisons, because in the available inde-
pendent finite~difference (both spatial and temporal) predictions involving
large-deflection elastic-plastic behavior (Ref. 44), the timewise central-
difference method is used.
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improved formulation is used. Based on these considerations, only the improved

formulation will be used in the following further example calculations of large-

deflection elastic~plastic structural transient responses.

5.3.4 Comparison of LC Versus CC Assumed Displacement

Functions for the Bernoulli-Euler-Type of Ring Element

The free ring has been analyzed by using the Bernoulli-Euler type of
ring element with either CC or LC assumed-displacement functions. Shown in
Fig. 1l6a is the maximum natural frequency uhax for the linear behavior of the
finite~element representation of the ring as a function of the number of ele-~
ments per half ring. It is seen that for the same mesh size, the use of CC
assumed-displacement elements has a larger wmax (hence requires a small critical
time step Atcz = z/wmax) than that occurring when the LC assumed displacement
elements are used. The ring centerline separation time histories predicted by
using CC assumed-displaceﬁent elements compared with that predicted by using
LC assumed displacement elements are shown in Fig. 16b, where the ring material
is considered to be elastic linear-strain hardening (EL-SH). The experimentally
observed response is also shown for convenient comparison. It is seen that as
the structure is modeled as more and more finely subdivided, the LC element so-
lutions converge and provide a somewhat stiffer response compared with experi-
ment, while the solutions obtained from using the CC element converge more
rapidly but tend to be "too flexible". However, the strain-time histories as
shown in Fig. 16¢c indicate that the strain responses predicted by the CC ele-
ment are very close to measured values, while the LC element under-predicts

the strain.

It should be noted that for this free ring subjected to severe impulse
loading (see Fig. llc), one may expect the strain-rate effect to become rather
important. The central line separation and strain time histories predicted
from the elastic linear strain-hardening and strain rate (EL-SH-SR) calculations
are shown in Fig. 17a and Fig. 17b, respectively. Far better (in fact, excellent)
agreement with experiment of the CC element predictions than those of the LC ele-
ment predictions are observed. It should be mentioned that for this free ring
involving a rather severe degree of response, computational experiments have

indicated that reliable deflection and strain predictions are obtained if the
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. < o. = o. . . . < o.
time steps are At < 0.8 x Atc2 0.8(2/w ) Comparing with At < 0 99(2/wmax)
for the clamped beam, it is believed that the critical time step is affected
by the severity of the structural responses. That is, large deflections play
the key role in effectively stiffening the structure and thus requiring a

smaller At to avoid round-off error instability.

The above-mentioned comparable behavior of the CC element predictions
versus LC element predictions are also cbserved in the clamped ring calculations;

see for example, the central deflection responses presented in Fig. 18.

In view of the present results and those of (Ref. 161); it can be con-
cluded that the CC-type assumed displacement function exhibits significantly
improved predictions, especially for the strains, over the LC assumed-displace-
ment elements. Also, the former converges very rapidly but at the expense of

a smaller allowable time-increment step compared with the latter.

It should be noted that in the above example, the converged solution
obtained by using a finer mesh size is caused not only by the better.approxima-
tion of the original continuum, but also by the better representation of the
abrupt change of the initial impulse loading imparted to the system at the edge
of the high explosive. This matter is discussed further in Subsection 5.3.6.1.

5.3.5 Comparison of the Use of a Consistent Mass Matrix

Versus a Lumped Mass Matrix

If the lumped mass matrix is used (@ = 1/2, 8 = 1/24, see Eq. 4.32) for
the analysis of the clamped beam example, it is observed in Fig. 19a that, for
the same mesh size, the maximum frequency represented by the lumped mass matrix
system {linear-elastic, small deflection) is smaller than that obtained by the
use of a consistent mass matrix system. Hence, a larger time increment size
(to avoid numerical instability) can be used for the lumped-mass-matrix system

than for the consistent-mass-matrix system.

Figure 19b shows the midspan deflection responses for large-deflection
elastic~plastic strain-rate dependent behavior. The responses predicted by
both types of mass-matrix systems are quite close to each other, where the
half-span of the beam is modeled by 10 elements and the time increment size

used for a stable solution is At < 0.99 Atcl = 0'99(2/uhax)' That is, 1.45 usec
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for the consistent mass matrix system and 2.45 Hsec for the lumped mass matrix
system. A violent degradation of the responses occurs when At is only a trifle
larger than Atcﬁ' Comparisons of lumped mass model (o = 1/2, § = 1/24, see

Eq. 4.32) predictions versus consistent mass model predictions for the free
ring example using Bernoulli-Euler CC-type ring elements are presented in

Figs. 20a, 20b, and 20c for the maximum natural frequencies, the central-line
separation, and the strain responses, respectively. Again, by using the

lumped mass matrix, a smaller maximum natural frequency and good accuracy of
the predicted nonlinear responses compared with the use‘of the consistent mass

matrix are observed.

It should be noted that the use of the lumped mass matrix\(with a=1/2,
§ = 1/24) not only decreases the maximum natural frequency (hence enables one
to employ a larger time increment step for the response calculation than the
consistent mass matrix system), but also reduces the storage and computer time
required for the solution of the transient response problem. Because the lumped
mass matrix is a diagonal matrix, {M] = [miéi.], its inverse is just
[M]_1 = [l/mi(ﬁij)]. However, it should be noted that further studies need to be
conducted to develop mass matrix lumping rules which are appropriate for various

user-selected criteria.

5.3.6 Assessment of Some Features of the Method

Among the various features of the present finite-element analysis which

are examined and discussed in the following are:

(a) the effects of various initial velocities, specified
at the nodal points of the finite-element assembled
structure, to approximate the impulse loading which
is produced by the detonation of a sheet of finité-
span high explosive;

(b) effects of the number of spanwise Gaussian points
used to evaluate the properties of each discrete
element {p} and [h], and the number of depthwise
Gaussian points used to evaluate stress resultants
(axial force, moment and/or shear force) at each span-

wise Gaussian station;
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(c) the effect on the predicted transient response of
including strain-rate sensitivity;

(d) the effect on the predicted transient response of
including transverse shear deformation.

Each of these matters is discussed as®” follows.

5.3.6.1 Effects of Using Various Initial Nodal Velocities

to Approximate the Impulse Loading

Experimentally, the impulsive loading may be produced by the detonation
of a sheet of high explosive (HE). Between the HE and the test specimen is a
thin layer of a suitable buffer material to prevent intense stress-wave-
induced gpall fracture of the test specimen. Experiment indicates that a
nearly uniform initial normal impulse is imparted to those portions of the
specimen immediately underneath the HE layer. However, for the region of the
beam near the spanwise edges of the HE layer, a very steep gradient of imparted
impulse is observed. A typical normalized distribution (Ref. 44) of the im-
parted impulse, is shown in Fig. 2la for the clamped beam covered by 0.015-in.
thick HE layer (DuPont EL 506D) over a 2~in. span. The finite-span HE edge

effect persists to a distance of about 0.5 to 1.0 inch.

In theoretical -analyses the impulsive loading can conveniently be ap-
proximated by assuming an initial velocity distribution. Corresponding to the
present finite-element approach, the initial conditions to be specified are

those nodal generalized initial velocities {d*} From the spanwise experi-

—0°
mental impulse distribution data shown in Fig. 212, a uniform initial transverse
nodal velocity is assumed to occur at those nodes of the beam elements which are
entirely covered by the HE layer. However, for nodes within the HE edge~effect
zone, the specification of initial velocities poses some uncertainty. Because
the compatibility conditions required by the Bernoulli-Euler finite-element
displacement model are that at boundary nodes of each element, the compati-
bility of w and Y(=9w/9n - v/R) with neighboring elements is required, the
initial velocities of node n (if it is located at the middle of the HE edge
zone) may be specified by either (1) w=a, V=0o0r (2) w=a/2,v = 0, or (3)

w=a/2, V= a/k, where "a" is the uniform initial normal velocity assigned to
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the nodes covered by the HE layer but not in the HE edge zone of span "4".
These three initial velocity simulations of the effect of a finite span of the
HE layer on the distribution of imparted impulse (as depicted in Fig. 21b and

dgsignated as IV1l, IV2, and IV3) have been tested in the present analysis.

The clamped-beam midspan deflection responses resulting from using these
three different initial conditions are compared with each other and with experi-
ment in Fig. 22. As shown in Fig. 22, it can be seen that the use of IV1
initial velocity representation gives a response with higher amplitude than
both that of experiment and those responses predicted by using IV2 and IV3,
whereas the responses obtained by employing IV2 and IV3 initial velocity repre-~
sentations are close to each other and are in good agreement with experiment.
Hence, it may be concluded that the IV1 initial velocity representation gives
a higher amount of impulse than the actual impulse imparted to the beam, where-
as the IV2 and IV3 initial condition representations tend to simulate the ex-
perimentally-imparted impulse better than the first one does. 1In this example,
10 uniform elements are used to model the half-span of the beam. But, when a
coarser mesh is used, as shown in Fig. 23 for the free-ring central-plane
separation responses, the IV2 and the IV3 initial condition simulations can
give very different responses. However, both predictions approach each other
when the mesh sizes become finer. From the above examples, it may be concluded
that a finer space mesh would be required, especially near the edge of the HE
layer, before a reasonably accurate representation of the initial impulse
loading conditions can be obtained by the present computational method, as

correlated with experiment.

5.3.6.2 Effects of the Number of Spanwise and Depthwise

Gaussian Integration Points

Concerning the numerical evaluation of the integrals for determining
the element properties {p} and [h] of Eq. 4.37, Gaussian guadrature has been
employed to carry out the spanwise integrations over the length of the element
and depthwise at each spanwise Gaussian point. Gaussian quadrature has been
used also to evaluate the stress resultants (axial force, moment, and/or shear

force) .
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As illustrated by the clamped-beam example, the midspan~deflection
responses obtained by using various numbers of spanwise Gaussian points are
shown in Fig. 24; in each case, 4 depthwise Gaussian stations have been em-
ployed to evaluate the stress resultants at each spanwise Gaussian point. It
is seen that the prediction obtained by using only one spanwise Gaussian point
tends to deviate appreciably from the behavior predicted by using 2, 3, or 4
spanwise Gaussian points; the 2-spanwise-Gaussian-point result tends to be
somewhat too stiff; while the 3~ and 4-spanwise-Gaussian-point results are
very close to each other. Also shown in Fig. 24 are the results obtained by
assuming that the stress resultants may be approximated over the length of the
element by their values at the center of the element; this prediction is seen
to be better than that for the l-spanwise-Gaussian~point case, but the

"structure" tends to be too stiff.

As for the effects of varying the number of depthwise Gaussian points to
evaluate the stress resultants, shown in Fig. 25 are the midspan-deflection
responses of the clamped-beam obtained by using 2, 3, 4, and 5 depthwise
Gaussian points. In each case, 3 spanwise Gaussian points are used. It is
seen that there is not very much difference among the deflection responses, as
the number of depthwise Gaussian points is increased from 2 to 5. This is
probably because the stretching behavior is predominant for the present clamped-
beam example. The respbnses of the 2~ and of the 4-point case differ somewhat,
while the use of more than 4 depthwise Gaussian points affected the predicted
response only very little.+ In view of the above results and those of Refs. 44
and 48, it appears reasonable to conclude that the use of 3 spanwise Gaussian
points (or stations) and 4 depthwise Gaussian points at each spanwise Gaussian
station suffices for (a) representing the internal stress distributions across

the elements thickness and (b) the spanwise integration over the element length.

5.3.6.3 The Effect of Strain-Rate Sensitivity

In order to illustrate the effect on tie transient response of using

material strain-rate sensitivity in tihe present analysis, the impulsively-locaded

Similar calculations for the free ring (Fig. llc) using 3 spanwise Gaussian
stations and either 4 or 6 depthwise Gaussian stations exhibited very little
difference in the predicted responses.
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clamped beam has been analyzed with the material property approximated either
by EL-PP (elastic-perfectly plastie) or by EL-PP-SR (elastic perfectly-plastic
and strain-rate sensitive). The midspan deflection responses are compared in
Fig. 20. Tne EL-PP-SR solution gives an 8% reduction in peak deflection com-
pared with the EL-PP results and this peak occurs about 40 usec earlier than

in the EL-PP solution.

For the impulsively-loaded free ring with CC Bernoulli-Euler-type ring
elements, the predicted centerline midplane separation responses obtained by
using the EL~SH-SR (elastic, linear-strain-hardening, and strain-rate sensitive)
approximation for the material behavior leads to a 29% smaller peak anplitude
and this peak occurs about 400 usec earlier than in the EL-SH solution, as
shown in Fig. 27. Shown also are the responses predicted by using LC Bernoulli-

Euler-type ring elements with or without including the strain-rate effect.

Figure 28 shows the strain-rate effect on the central deflection re-
sponses of the impulsively-loaded clamped ring which was modeled by using
either the LC Bernoulli-Euler-type element or the Timoshenko-type element. It
is seen that including tne strain~rate effect produces a “stiffer response";
i.e., small peak deformation response and earlier time-to-peak compared with

the corresponding strain-rate independent predictions.

The above-mentioned peak deformation response reductions and earlier
peak responses caused by assuming the material to be strain-rate sensitive
(and to follow Eg. 2.75) is also observed in the finite-difference calculations
of Ref. 44.

5.3.6.4 The Effects of Including Transverse Snear Deformation

In order to examine the influence on the predicted response by using
the present Timoshenko~type element as developed in Subsection 4.4 (which
takes the transverse shear deformation into account) as compared with that
obtained by using the LC and CC Bernoulli-Euler elements, the impulsively-
loaded ring problems were analyzed with only the linear assumed displacement

functions for v, w, and © for the Timoshenko-type element.

The maximum natural frequency (linear system) as computed by employing

the Timoshenko-type elements is compared with that obtained by using
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Bernoulli~Euler-type elements, in Fig. 29 and Fig. 30 for the clamped beam
anG the free ring, respectively, as a function of the number of elements per
half-span. It is observed for both the beam and the ring that the use of
Timoshenko-type elements gives a larger maximum natural frequency, and hence
a small critical At, than that obtained by the use of Bernoulli-Euler-type

elements.

For the clamped beam, shown in Fig. 31 are the Timoshenko-type predic-
tion and the Bernoulli~Euler-type prediction of the midspan deflection re-

sponses. Good agreement between these solutions is observed..

Turning to the clamped ring results, the predicted central deflecéion
responses for the Timoshenko-type element are compared with those obtained by
using (1) LC Bernoulli~-Euler-type elements and (2) CC Bernoulli-Euler-type
elements in Fig. 32. The observations are that the agreement of the Timoshenko-
type element prediction with the CC Bernoulli-Euler-type prediction is far
better than with the LC Bernoulli-Euler-type element prediction.

It should be noted that, for the present beam and ring examples, the
transverse shear deformation effect essentially can be neglected, because of
the thinness of the beam (thickness/span = 0.0125) and ring (thickness/radius =
0.042). Hence, these examples permit confirming: (1) that the present
Timoshenko-type element provides accurate large-deflection elastic-plastic
transient response predictions of Bernoulli-Euler-type deformation and (2) the
deficiency in the LC~-type element, but do not provide a critical evaluation of
the present Timoshenko-type element to predict large-deflection elastic-plastic
responses with significant transverse shear deformation effects. An appro-
priate such example having a reliable solution {(or test result) has not been
located.

5.3.7 Comparison of Accuracy and Efficiency of Finite-Element

Solutions Versus Finite~-Difference Solutions

5.3.7.1 Scope of Comparisons

in Ref. 44, experimental measurements of transient deformations and
strains for impulsively-loaded clamped beams, clamped rings, and free rings

which undergo large~deflection, elastic-plastic responses are compared with
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finite-difference (FD) predictions =-- wherein finite differencing is employed
for both spatially~ and time-varying quantities. Good theoretical-experimental
agreement has been demonstrated.

Since the free-ring example (Fig. llc) embodies the most reliably de-
fined boundary conditions of the above-cited three cases, only this example is
used (see Subsection 5.3.7.2) to compare the present finite-elemeht (FE) pre-
dictions with FD predictions, and with experiment. Similar comparisons,
carried out for the other two exampleé of Fig. 11, show similar comparative
results.

This free-ring example is also used in Subsection 5.3.7.3 to illustrate
and assess the comparative efficiency of the FD and the present FE prediction
method(s) =~ in terms of the 5;ount of computer central processing unit (CPU)
time required to carry out calculations for a given time of actual structural
response and at the same time to provide peak deformation (and/or peak strain)
predictions within a given percentage of the converged value (displacement or
strain). This comparison is believed to provide a reasonably good, although
tentative, assessment of the comparative cost for providing predictions of a
"given accuracy" by the FE and the FD approach.

5.3.7.2 Comparison of Experiment with FE and FD Predictions

The geometiy, material properties, and loading conditions (represented
here as initial velocity conditions) are shown in Fig. llc for the free ring.
It has been demonstrated both in Ref. 44 and in Subsection 5.3.6.3 that the
neglect of strain-rate effects in representing the mechanical properties of
this 6061~T6 aluminum alloy material leads to a vast overprediction of the
structural response. Accordingly, for convenience, the only material property
representation embloyed in the present comparison is EL~SH~SR (g}astic, linear
-strain hardening, and strain-rate dependent), with D = 6500 sec:-l and p = 4
(see Eg. 4.50). Also, the free ring is assumed to undergc Bernoulli-Euler-type
deformation.

In both the FE and the FD predictions being discussed, the temporal
3-point central-difference operator is used. In view of the FE results dis-
cussed in the previous subsections, only the improved formulation type of FE
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predictions is included here; also, the following features are used as being

appropriate and "adeguate":

(a)  in each element, three spanwise Gaussiaix stations are used
to evaluate {p} and [h].

{(b) four depthwise Gaussian stations are used to evaluate
the inplane stress resultants and the moment resultants
at each spanwise Gaussian station.

(c) ‘Bernoulli~-Euler finite-elements having the CC type of

assumed displacement function are employed.

For the FD predictions, the method of Ref. 44 as subsequently improved
and embodied in the JET 2 computer program of Ref. 169 has been used. In this
method, the stress and moment resultants are evaluated only at each "finite-
difference mass-point" station; at each such station, four depthwise Gaussian
stations are used to carry out these evaluations in order to provide appropri-
ate correspondence to the evaluations used in the present FE calculations. It
should be noted that in the finite-difference calculations for the present
type of structure, there are only two degrees of freedom (axial displacement
and lateral displacement) at each space-mesh intersection (also called "mass
point station"). Also, the mass matrix in the FD method is obtained by

(automatic) lumping.

If one were to take advantage of symmetry, one could model the half ring
by a number NE of finite elements of the CC-type assumed-displacement function
or by ND finite-difference space-mesh stations. Accordingly, the associated

number of degrees of freedom for each would be as follows:

Retained Number of
Degrees of Freedom
'Degrees of Freedom with Symmetry Re-
Number Unrestrained (dofu) straints Applied (dofsl
FE: NE mE + 4 ANE
(for CC elements)
FD: ND ZND ZND

In order to illustrate typical comparisons of the FE vs FD predictions,
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calculations which utilize a roughly comparable number of degrees of freedom
are selected for presentation here. Accordingly, predictions for N; = 18 (or
dofu = 76 and dofé = 72) and N; = 40 (or dofu = dofs = 80) are compared in
Fig. 33a for the centerline midplane separation history and in Fig. 33b for
the deformation profiles at 1140 usec and 2580 usec. It is seen that there is
very good agreement between the FE and the FD prediction shown here; also, both
predictions are in reasonably good agreement with experiment. Note that the
experimental deformed-ring profiles exhibit some asymmetry, possibly from
initial out-of-roundness and/or some unintentional and undefined asymmetry in
the applied impulsive loading. Whereas, in both the FE and FD predictions,
symmetry was imposed by choice -- nonsymmetric cases could be analyzed, how-

ever.

For the improved-formulation FE analysis of this ring which was modeled
by 18 CC elements, transient response calculations were carried out by using
(a) the consistent mass matrix and (b) the lumped mass matrix. 1In each case,
the At used was approximately 0.8 Atcl = 0.8 [Z/wmax] as numerical experimgnts
had previously verified to be acceptable; accordingly, the At's were, 0.6 and
1.8 usec, respectively. Since to the scale of the present plots these two
transient response predictions were nearly alike, only the "more efficient"
lumped-mass FE prediction is shown in Fig. 33. For the FD calculation, the At

V1/2

employed was 9/8 Hsec which is 99% of At = (As)/(E/p) where As is

critical
the finite-difference mesh length.

An examination of a more sensitive quantity is provided by the dynamic
strain responses. Predicted and experimentally-measured strain-time histories
at 6 locations on the ring are compared in Figs. 33c¢c and 33d. Again, both the
FE and the FD predictions are in reasonably good amplitude and phase agreement

with experiment, with the FE results being somewhat better.

Strain profiles predicted and measured at the 3,000 usec instant are
compared in F}g. 33e. Fairly good agreement among the FE prediction, the FD
prediction, and experiment is observed. Also, note in Fig. 33e that abrupt
reversal of the strain occurs at O = 60° which is the location of the edge of
the high explosive layer, and that the ring undergoes essentially pure bending
for O greater than about 70°. Considerable compression strain plus bending

+Uniform element lengths and uniform mesh lengths were used.
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strain is seen to exist for small-f locations.

5.3.7.3 Convergence and Efficiency Comparisons

It was noted in Subsection 5.3.3 that the conventional finite-element
formulation requires more computer storage and running time to analyze a given
problem than does the improved finite-element formulation. For example, for
1000 cycles of computing for the clamped-beam example of Fig. lla, the con-
ventional formulation required 1.85 minutes while the improved formulation re-
quired 1.41 minutes of CPU time (a saving of about 24%) where the same number
of ILC elements was used for both computations; the predictions from these two
calculations were almost indistinguishable. Since it is clear that the improved
formulation provides more efficient predictions, only the improved formulation

is used in subsequent comparisons in this subsection.

For assessing the comparative efficiencies of the FE approaches (a) con-
sistent mass and (b) lumped mass versus the finite-difference calculation, the
free-ring example of Fig. llc is used for both convenience and the fact that

large deformations and elastic-plastic transient responses are involved.

By increasing the number of egual-length finite elements (of the CC type)
to model the half ring (taking advantage of symmetry), transient response pre-
dictions have been carried out. The following two useful indices of the re-
sponse were monitored, and are discussed herein, in obtainihg a useful measure

of convergence:

(1) the peak relative displacement of the ring at the symmetry
plane (or ¢ ).

(2) the peak circumferential strain at several locations on

the outer surface of the ring.

By plotting these results as a function of (l/NE)z, and extrapolating to
(l/NE)2 = 0, "converged" results were estimated. The peak responses predicted
were then ratioced to the appropriate "converged" result. Accordingly, shown
in Fig. 34a is the ratio to the converged result of the predicted peak center;
line relative displacement as a function of the number of unrestrained degrees

of freedom dofu (= 4NE + 4). Shown in Fig. 34b is the average at 6 = 87°,
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92.5°, and 177° of the peak circumferential strain ratioced to the respective
converged value as a function of dofu; a mean dashed line is shown as well as
a speckled band to indicate that such results show scatter depending upon the
O-location chosen and the number of 8-locations which one could use to con-
struct this "average". It should be noted that, as discussed in Subsection
5.3.6.1, the specification of initial nodal velocity at the node of the finite
element which is located at the spanwise edge of the high~explosive layer poses
some uncertainty; that is, the use of different initial nodal velocities

(IV2 or 1IV3) will yield very different coarse-mesh deformation responses be-~
cause of the nature of the initial-velocity distribution. Improvements can be
made by using finer meshes near the edge of the high-explosive layer. However,
pending a more rational way of representing the finite span impulsive loading
can be devised, the results presented in Figs. 34a and 34b are based on a

uniform-mesh size and the IV3 type of initial~velocity representation.

Similar calculations and reductions were carried out for the finite
difference method using the JET2 computer program. Shown in Fig. 35a is the
ratio to the converged value of the predicted peak centerline relative dis-
placement as a function of the number of degrees of freedom (i.e., ZND).
Similarly, Fig. 35b shows the average at 0 = 27°, 45°, 63°, 81°, 99° and 171°
of the peak circumferential strain ratioed to the respective converged value
as a function of the number of degrees of freedom in the finite-difference
model; for these O-locations, the peak strain ranged from about 2 to 4 percent.
In Fig. 35b a dashed "average" curve through a speckled band is shown to indi-

cate that such results show scatter which depends upon the 6-location studied.

With respect to computing time, the amount of computer central process-
ing unit time is believed to provide a reasonable basis for comparing the
"time consumption® of the FE and the FD calculations. For the improved formula-
tion version of the finite-element method when applied to large-deformation
elastic-plastic transient response problems, it has been found that the maximum
allowable time-increment size At is about °°8(2/mmax) where wmax is the largest
natural frequency contained in the finite-element model of the structure for
small vibrations, where the 3-point central-difference finite~difference time

operator is used. When the present CC type of finite element is used together
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with (a) the consistent mass (C) matrix or (b) the lumped mass (L) matrix, the
w is found to be (see Fig. 16a):
max

6 .

(wc) = [«0.1445 + 0.03578(dofu)110 radians/sec (5.8a)
6 .

(wL) = [~0.0927 + 0.0127(dofu)110 radians/sec (5.8b)

= ing; <<
where dofu 4NE + 4 for the half ring; note that (wL) (w.)

“c’ max”
Further, it has been found that the amount of central processing unit time

(CPUT) in minutes, for ‘the improved FE method, is given approximately by:
-6 t .
CPUT = [42 x 10 ][dofu] it {(minutes) (5.9)

where t is the number of seconds of actual structural response to be computed
and At is also in seconds. Since the allowable At = 0.8 (2/w__ ), it follows
that:

(CPUT)C = [-3.794(dofu) +o.9393(dofu)2]t (5.10a)
(CPUT) L= [-2.433 (dofu) +0,3325 (dofu) 2] t (5.10b)

Similarly for the JET 2 program which uses the finite-difference method,
it has been found that

-6 t .
(CPUT)FD = [23 x 10 ][dofu] e {minutes) (5.11)

where dofu = ZND. Also since the largest allowable At is given by
(As)/(E/p)l/z, it follows for the half ring with R = 3 in. and At for conserva-
tism taken as 0.99(AS)/(E/P)1/2 that

) .
(CPUT)FD = 0.2513(dofu) t . (5.12)

With the "convergence" results of Figs. 34a through 35b and with the
above central processing unit time for computing, one may estimate the compara-
tive CPUT values for the FEC, FEL, and FD computer programs used here in order
to predict the peak centerline relative deformation or the peak circumferential
strain to within selected percentages of the converged value for each type of

calculation. An example-of such estimates is tabulated as follows for
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computing 1500 usec of transient response of the free ring, wherein it has

been assumed that the "convergence rate" for the lumped mass version of the

finite~element method is essentially the same as that shown in Figs. 34a and

34b for the consistent mass version of the finite~element method.

CENTRAL PROCESSING UNIT COMPUTING TIME ON IBM 370/155
AT MIT (MINUTES) FOR 1500 MICROSECONDS OF ACTUAL

STRUCTURAL RESPONSE

Finite-Element ‘
Improved Formulation Finite Difference
CC and CC and
Consistent Mass |Lumped Mass
Percent of "Converged"
Peak Ring Relative
Displacement

3 2.03 .65 1.36

2 3.24 1.06 1.64

1 6.89 2.32 2.01
Percent of “"Converged"

Peak Strain on the
Average

10 2.48 .82 1.85

5 5.58 1.87 2.47

7.50 2.53 2.92
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Comparing the two types of finite element calculations (consistent
mass and lumped mass), it is evident that it is substantially more efficient
to use the lumped-mass version of the finite element method. Further, since
the transient responses of the consistent mass and of the lumped mass FE cal-
culations differ only slightly, it is recommended that the lumped mass version
of the FE method be selected as being more efficient and adequate for engineer-

ing prediction purposes.

Note also that this example comparison indicates that the FEL calcula~-
tion is often more efficient than the FD prediction method. However, the con-
clusion that the FEL calculation will usually be more efficient than the FD
method is not warranted on the basis of this limited comparison. Many more
examples and much more thorough comparisons would be required before any judg-
ment of this typé could be made -- it would not be unexpected to find that one
method would be superior for certain types of examples and the other method
would be superior for certain other types of structural transient response

problems.

Finally, in comparing FEL calculations with FD calculations wherein each
employs the same number of degrees of freedom dofu, for the free ring, it is
seen that the ratio (CPUT)FD/(CPUT)L for dofu = 10, 50, and 100 is 2.815, 0.884,
and 0.816, respectively, and asymptotically approaches 0.755 as dofu is in~-
creased indefinitely if it is presumed that Egs. 5.10b and 5.12 would apply --
these equations would, of course, cease to be wvalid Wh?fe dofu becomes so
large that resort to auxiliary storage and retrieval would be needed. The

reasons for this relative computing time consumption involve the facts that:

(a} For the same number of degrees of freedom, the total number
of spanwise Gaussian points employed in the FE method is 1.5
times as large as the total number of space-mesh intersections
used in the FD method; Gaussian evaluations in the latter are
performed only at the space-mesh intersection stations. At
each spanwise Gaussian station, inplane stress resultants and

moment resultants are evaluated.
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{(b) In the FD method, the strain is computed from the strain-
displacement relations by finite-difference approximations
in terms of displacements at two or three neighboring space-
mesh stations. On the other hand, in the FE evaluation of
strains, one computes the strains from the strain-displace-
ment relations directly by using the assumed-displacement
field of the finite element involved; this involves a time-
consuming matrix multiplication. Of course, one could cir-
cumvent this in part in the FE method by resorting to the
use of finite-difference approximations for each spanwise
Gaussian station in terms of nearby nodal generalized dis-

placements.

Also, several recent papers (Refs. 187, 188, and 189) in which various
aspects of the finite-difference method versus the finite-element method are
discussed have just appeared; these documents are recommended reading —-- cover-
ing some of the present aspects as well as others. It perhaps should be men-
tioned that the finite-difference equations formulated in Refs. 39, 188, and
189 are based upon the variational-energy principle; the derivatives of the
field variables in the variational functional are replaced by appropriate
finite-difference quotients which involve only the values of the variables at
the space-mesh stations. This finite-difference formulation is, hence, somewhat
different from that described in Section 3, wherein the derivatives in the
governing differential equations and boundary conditions are replaced by appro-

priate finite~difference expressions.
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SECTION 6

APPLICATION: CONTAINMENT/DEFLECTION RING RESPONSES
TO ENGINE ROTOR BLADE FRAGMENT IMPACT

6.1 Introduction and Problem Definition

Since the advent of the turbojet engine, there have been, from time to
time, failures of turbine and/or compressor rotor blades and/or disks on en-
gines of both military and civilian aircraft (Refs. 1, 170-173). Fragments
which are uncontained (that is, penetrate the engine casing) might injure
personnel occupying the aircraft and might cause additional damage to fuel
lines and tanks, control systems, and other wvital components. Although strenu-
ous efforts have been and continue to be made to avoid blade/disk failures
through improved materials, design, fabrication, and inspection, a not-insignifi-
cant number of such failures persist. It is desirable, therefore, to provide
protection (a) for on-board personnel of aircraft in flight and (b) for vital

components.

Similar but perhaps less severe fragment containment/control problems
may be encountered where turbines and/or energy-storing flywheels are used in
stationary power plants, aboard ships, and/or in land vehicles such as buses,
trucks, automobiles, and train locomotives. In these cases, there would usually
be less concern about the “weight penalty" for insuring fragment containment

than for aircraft.

Two distinct avenues for providing this protection are evident. First,
the structure surrounding the "failure-prone" rotor region could be designed
to contain (that is, prevent the escape of) the rotor-burst fragments completely.
Second, the structure surrounding this rotor could be designed so as to prevent
fragment penetration in, and to deflect fragments away from, certain critical
regions or directions but to permit fragment escape readily in other "harmless"
regions or directions. One or both of these schemes could, in principle, be
émployed in a given design. In any event, this desired protection is sought
for the least weight and/or cost penalty. If only one of these two schemes
were to be adopted, one might expect that the second would be most cost and/or

weight effective. However, the present (1) knowledge of the fragment-structure
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interaction phenomena and (2) analysis/design tools are inadequate to permit
making a definitive comparative assessment at this time, although much progress
has been made in both of these areas in the past few years.

As pointed out in Ref. 1, NASA has been sponsoring a research program
which is designed to meet the objective of providing the necessary protection
to aircraft without imposing large weight penalties. Starting about 1964, the
Naval Air Propulsion Test Center (NAPTC) under NASA sponsorship has constructed
and employed a spin-chamber test facility wherein rotors of various sizes can be

operated at high rpm, failed, and very importantly the interactions of the re-

sulting fragments with various types of containment and/or deflection structures
can be studied with high-speed photography, in addition to post-mortem studies
of the containment/deflection structure and the fragments. Many such tests in-
volving single fragments or many complex fragments impinging upon containment
structures of various types and materials have been conducted (Refs. 170-174)
and have substantially increased the body of knowledge of the attendant phe-
nomena. For the past several years NASA has sponsored a research effort at

the MIT Aerocelastic and Structures Research Laboratory (ASRL) to develop methods
for predicting theoretically the interaction behawvior between fragments and con-
tainment/deflection structures, as well as the transient deformations and re-
sponses of containment/deflection structures -~ the principal objective being

to devise reliable prediction/design procedures and containment/deflection
techniques. Important cross—fertilization has occurred between the NAPTC ex-
perimental and the MIT-ASRL theoretical studies, with special supportive-
diagnostic experiments and detailed measurements being designed jointly by

NASA, NAPTC, and MIT personnel and conducted at the NAPTC. Subsequent analysis
and theoretical-experimental correlation work has been increasing both the under-
standing of the phenomena involved and the ability to predict fhese interaction/
structural-response phenomena quantitatively.

Because of the multiple complexities involved in the very general case
wherein the failure of one blade leads to impact against the engine casing, re-
bound, interaction with other blades and subsequent cascading rotor-failures
and multiple-impact interactions of the various fragments with the casing and

with each other, it is necessary to focus attention initially upon a much
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simpler situation in order to develop an adequate understanding of these col-
lision-interaction processes. Accordingly, rather than considering the gen-

eral three-dimensional large deformations of actual engine casings under multi-

ple rotor-fragment attack, the simpler problem of planar structural response

of containment structures has been scrutinized. That is, the containment
structure is regarded simply as a structural ring lying in a plane; the ring
may undergo large deformations but these deformations are confined essentially
to that plane. For such a case, a numerical method of analysis to predict the
transient large~deformation responses of such structures to known impulsive
and/or transient external loading has been developed at the MIT-ASRL and has
been verified (Refs. 44 and 45) by evaluative comparison with high-quality ex-
perimental data, to provide reliable predictions. This prediction method is
sufficiently simple that one can feasibly carry out certain types of parametric

structural response calculations, provided that known or prescribed externally-

applied forces or impulses are employed; limited such studies are reported in
Refs. 175 and 176.

In the present context, therefore, the crucial informatiocn which needs

to be determined (if the structural response of a containment ring is to be
predicted reliably) concerns the magnitude, distribution, and time history of
the loading which the ring experiences because of fragment impact and inter-
action with the ring. Two means for supplying this information have been

considered:

(1) The TEJ concept (Refs. 169, 176, 177) which utilizes measured
experimental ring position-time data during the ring-fragment
interaction process in order to deduce the external forces
experienced by the ring. This concept has been pursued. An
important merit of this approach is that it can be applied
with equal facility to ring problems involving simple single
fragments such as one blade, or to cases involving a complex
multi-bladed-disk fragment. The central idea here is that if
the TEJ type analysis were applied to typical cases of, for
example, (a) single-blade impact, (b) disk-segment impact,
and/or (c) multi-bladed disk fragment impact (see Figs. 36
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and 37), one could determine the distribution and time
history of the forces applied to the contaimnment ring

for each case. Such forces could then be applied tenta-
tively in computer code response-prediction-and-screen-

ing studies for similar types of ring-fragment interaction
problems involving various other materials, where guidance
in the proper application of these forces or their modifica-
tion could be furnished by dimensional-analysis considera-~

tions and selected spot-check experiments.

On the other hand, this approach suffers from the fact that ex-
perimental transient structural deformation data must be avail-
able; the forcing function is not determined from basic material

property, geometry, and initial impact information.

(2) The second approach, however, utilizes basic material
property, geometry, and initial impact information in
an approximate analysi§ which employs the basic prin-
ciples of energy and momentum conservation as well as
material property constitutive data. If the problem
involves only a single fragment, this method can be
carried out and implemented without undue difficulty,
but can become very complicated and time consuming if
complex fragments and/or multiple fragments must be

taken into account.

Approach 1 is explained in detail in Refs. 169, 176, and 177. The present
report deals with approach 2 and confines attention to problems involving only
a single simple fragment; problems involving more complicated -fragments are

left for future consideration.

Various levels of sophistication may be employed in approach 2. One
could, for example, employ finite-difference methods wherein both the contain-
ment riné and the fragment are represented by a suitably fine three-dimensional
spatial mesh and the conservation equations are solved in time for simple con-~

figurations by digital computer codes such as HEMP (Ref. 178), STRIDE (Ref. 179),
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and/or HELP (Ref. 180), which take into account elastic, plastic, strain harden-
ing, and strain-rate behavior of the material. Such computations, while vital
for certain types of problems, are very lengthy and expensive, and are not well
suited for the type of engineering analysis/design purposes needed in the present
problem; for complicated or multiple fragments, such calculations would be pro-
hibitively complicated, lengthy, and expensive. A simpler, less complicated,

engineering-analysis attack within this general framework is needed.

Two categories of such an engineering analysis may be identified and
are termed: (a) the collision-imparted velocity method (CIVM) and (b) the

collision~force method (CFM). The essence of each method follows:

{a) Collision-Imparted Velocity Method (CIVM)

In this approach the local deformations of the fragment or of the
. ring at the collision interface do not enter explicitly, but the

containment ring can deform in an elastic-~plastic fashion by mem-

brane and bending action as a result of having imparted to it a

collision-induced velocity at the contact region via (a) per-

fectly-elastic or (b) perfectly~inelastic behavior. In fact,

any type of material behavior may be accommodated readily.

Since the collision analysis provides only collision imparted

velocity information for the ring and the fragment (not the

collision~induced interaction forces themselves), this procedure

is called the collision-imparted velocity method.

(b) Collision~Force Method (CFM)

In this method the primary information predicted in the collision
analysis consists of the collision-induced interaction forces
themselves; the associated and subsequent ring and fragment re-

sponses are also predicted.

Since the CIVM is much simpler to implement than the CFM approach, the CIVM
scheme has been studied and is discussed (later) in some detail in Subsections
6.2, 6.3, and 6.4 of this report. The CFM approach, described briefly in
Subsection 6.2.2, is currently under study, development, and feasibility

evaluation; these findings will appear in a future report.
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In Subsection 6.2 approximate collision analyses are discussed in de~-
tail. Some applications and evaluation of the CIVM approach are documented
in Subsection 6.3. Finally, some comments on potential extensions of the CIVM

scheme to more complex problems are given in Subsection 6.4.

6.2 Approximate Collision Analyses

Under consideration in this subsection are appro#imate methods for pre-
dicting the “"immediate consequences” of the impact of a fragment against
another physical body. One may regard the fragment as being (a) rigid, (b)
perfectly elastic, (c) perfectly inelastic, or (d) deformable elastic-plastic
with EL-SH-SR behavior; similar behavior may be attributed to the body which
is struck by the fragment. When both bodies are treated as behaving according
to (d), the modeled constitutive behavior of each most closely simulates the
true physical behavior, but the associated impact-interaction is the most com-
plex of the various options. For engineering applications purposes, one de-
sires to employ the simplest and least expensive procedure which will give ade-
quate engineering accuracy. Accordingly, various convenient and plausible
assumptions are invoked to predict»the "immediate impact~interaction” behavior

of a fragment which collides with a containment/deflection structure.

For present purposes, the subject collision-interaction problem is simpli-
fied by restricting the motion to lie in one plane; the extension of the analy-
sis to the more general three-dimensional motion-and-deformation behavior can
be carried out, if desired, in a future investigation. Also, only a single
simple fragment is considered, as depicted schematically in Fig. 36a. As
noted earlier, principal attention is given in this report to the approximate
analysis which is termed the collision-imparted velocity method (CIVM); only
limited discussion is devoted to the collision-force method (CFM) in
Subsection 6.2.2.

6.2.1 Collision-Imparted Velocity Method (CIVM)

For the CIVM approach, the following additional simplifying assumptions
are invoked:
(1) 1In an overall sense, the fragment is treated as being rigid.

It does not undergo bending or extensional deformation, but
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at the “immediate contact region" between the fragment
and the struck object (termed the "target" for conveni-
ence) , the collision process is regarded as being in-
stantaneous with a perfectly-elastic or a perfectly-
inelastic interaction.

(2) The colliding surfaces of both the fragment and the target
are perfectly smooth; hence, no forces and/or velocities
{(or momentum) are either transmitted or imparted in the
tangential direction.

(3) During the collision, the contact forces are the only ones
considered to act on the fragment and (in an antiparallel
fashion) on the ring. The internal forces are approximated
as being zero because the duration of the impact is so
short as to preclude their "effective development”.

(4) The collision process is instantaneous and involves only
the fragment and the containment-ring segment which en-
compasses the ring-fragment collision point, as indi-
cated schematically in Fig. 38. The word "instantaneous"
implies that the internal forces can be neglected be-
cause stress waves have not had time to traverse the
area near the collision from regions reasonably remote
from the impact point in the ring. It is this in~-
stantaneity which permits one to omit the internal
forces from the CIVM model.

(5) To avoid unduly complicating the analysis and because
of the smallness of the arc length of the target-ring
element, the ring element is treated as a straight

beam in the derivation of the impact eguations.

Two different approximation models are evident for the collision-interaction
calculation for the fragment with the ring; namely, the consistent mass model
and the lumped mass model. The former scheme treats each ring element as

having a distributed mass; the latter scheme, employed in Ref. 181, considers

the mass of each ring element to be concentrated at its two end nodes.
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Accordingly, there are two sets of impact equations corresponding to these two
approximate interaction models, which are described, respectively, in Subsec-
tions 6.2.1.1 and 6.2.1.2.

6.2.1.1 Consistent-Mass Collision Model

In this collision model,the affected ring segment is idealized as a straight
beam of length s having a nonuhiform distribution of mass. Since perfectly
sxnooth+ surfaces for both the ring segment and the fragment are assumed to
exist at the impact location, the instantaneous collision process results in
an equal and opposite impulse applied to the ring (beam) segment and to the
fragment in the direction normal to the axis of the ring segment; accordingly,
tangential-component velocities are unaffected -~ only the normal-direction
components of the velocities of these two bodies undergo- change because of
the collision. Hence, only these components are employed in the following con~

servation relations.

Referring to the schematic and notation of Fig. 39a and to the idealized
"line" geometry depicted in Fig. 40a, the impulse-momentum law and the kinetic
energy conservation law may be written to characterize the "instantaneous im-

pact behavior" of this system, as follows:

Translational Impulse-Momentum Law

my [( Ur/ “Ur)+ al Wy - LUr)I =P, (ring segment) (6.1)
e [ Uf/— Ug 1 =-%, (£ragment) (6.2)
Rotational Impulse-Momentum Law
I"g [wf-w, ] = -%, (Ad-Y)s (ring segment) (6.3)
I, [ 607/— wel= p, (Lsing) (fragment) (6.4)

+The smooth surface assumption is invoked, for convenience, in the present
analysis, but could be relaxed, if desired, in future work.
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‘Conservation of Kinetic Enexgy

s /Z - /2 /e rq€
e (U 42w ] ¢ F Ty [0/ % F m (U] + 7 T [0]

2
_l U \Jz { ru) z
—Z’mr[ pt & Wy +—Z_I"?'* r]
2 2
! i
tzmeUp 7L %
(6.5)
where
m_ = mass of the ring element which has a length s
m, = mass of the fragment whose length is 2fl + 2f2 (Fig. 39a)

£ in Eq. 6.4 = fragment length from the impact point to the c.g.
of the fragment
Irg = mass moment of inertia of the ring element
about its center of gravity (c.g.)

Y 2, s 2,
=[ m(§)§ §+f m‘?”? 7 (see Fig. 39a)

m(§) or m(n) denotes mass per unit length of the ring element

If = mass moment of inertia of the fragment about its c.g.
p, = normal impulse
1
a = (5'- Y)s
. =U1+U2
x 2
U - Y
w, o= - = angular velocity of the ring element
Ul,U2 = pnormal velocities at ring-element nodes 1 and 2,
respectively, immediately before impact
Uf,wf = fragment c.g. normal-direction velocity and angular

velocity immediately before impact
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U;, w;, Ui, Ui, Ué, wé = translational normal-direction velocities
and angular velocities immediately after
impact (primes indicate these after-impact

quantities).

Equations 6.1 through 6.5 represent five equations expressed in terms of the
five unknowns U;, w;, Ué, w!, and p,-
Next, it is convenient to eliminate pn by using the Eg. 6.l1l-value for

p, to replace p_in Egs. 6.2, 6.3, and 6.4 to obtain, after dividing each

equation by me:
U;‘UF=—m[(Ur/+aa)r/)-(Ur+au)r)J (6.2a)
I,[u),/—wrlz—ym[(ur,-fﬁw,/)—(U,+a We) ] (6.3a)
Iz[wfl_wf]:zmf(url_'*“wr,)“(ur*“w"):’ (6.4a)
where
_ Mr _ Lrg _ s
“me . L E=wms 0 LT owg

Rewriting and dividing Eg. 6.5 (the kinetic energy equation) by m; one cobtains,
with the use of Eq. 6.6:

i , 2 , 2
_ZL ml(U,/+ata)r)-(Ur"’awr)zj-l-zl-I,[(u),_)— (‘u)r)ZJ

i r .2 2 | ;2 z -
+5 LU - W] + 5 T, [(w/)- we)] =0 .5

If to the second, third, and fourth terms of Eq. 6.5a, one applies, respectively,
Egqs. 6.3a, 6.2a, and 6.4a, one obtains:
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%m{ (Ur,'*’awr/)z"(ur"-awr)z}
t7 L fwfvw (U raw) - Uy +awp)] |

t7 (U Uy {oml U v aw/) = (Up+awp)l}
z ) (6.7)

Next, dividing Eq. 6.7 by %[(U;: +aw!) - (U 4 aw)l,

one obtains
(0 U059 (U - 2 ] }z—z [U,+-a)s w,]—[uf-zug‘]} ©.6)

Equation 6.8 states that the velocity at the ring-impact point (C) relative
to the velocity at the fragment impact point (A) is simply reversed by per-

fectly~-elastic impact, since one may readily verify, for example, that

Uy = U+ ._usine)wf (6.9a)

A
U =Ur'+(’2"’d)5“)r = U, +U,-U)Ha (6.9b)

Thus, if desired, one may express Eq. 6.8 by the self-evident notation
{U- U = - f - Uy (6-8a)

As pointed out in Ref. 182 (pg. 4-37), experiments on direct central
impact of spherical bodies have shown that the relative velocities ‘of spheres

after impact are always less than before impact, and that these relative ve-
locities are opposite in direction. The ratio of the relative velocity after
impact to that before impact is called the "coefficient of restitution” and
is generally denoted as e. It is found that 0 < e < 1, where e = 1 represents
a perfectly-elastic impact and e = 0 denotes a perfectly-inelastic impact.

Typically, for glass e is 15/16, for ivory 8/9, steel and cork 5/9, wood about
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1/2, and clay and putty 0.* Further, it should be recalled that during imper-

fect impact of two colliding bodies of masses m and m,, with initial velocities

Vl and V2. there is a kinetic energy loss given by

2 z
m, m . -
K.E.Loss = 2————-(m+rzz) (V, -V;) (I-€) (6.10)

For the perfectly-elastic case of e = 1, no kinetic energy loss occurs. For

e # 1, there is a loss of kinetic energy; however, since the total energy

must be conserved, the "lost kinetic energy” is simply converted to other forms
such as thermal or heat energy, etc. A proper accounting of all of the energy
could be done in a complete thermo-mechanical analysis. For the present ap-
proximate analysis, however, one need not keep account of this kinetic energy

loss.

Applying the concept of the coefficient of restitution, e, to Eq. 6.8,

one may "generalize" this equation to read:

’ - i 4 - - - '
{[U,*‘a"])“)rj ‘fU,c'ZwchJL:‘ei[Uk*m Y)W [IJ’c wa]} (6.11)
where (1/2 - a)s £ (a -~ y) has been used.

Finally, one can solve Egs. 6.2a, 6.3a, 6.4a, and 6.1l to obtain ex-
pressions for Ué, m;, Ué, and w', the "unknown" after-impact quantities. First,

solving Eq. 6.3a for w; in terms of U;

;o _ym ;o
Wr - wr I‘_'_),am (U'— Ur)

Next, applying Eg. 6.3b to Eq. 6.2a and solving for Ué in terms of U;:
/ I, m /

= - - 6.2b
U{_ U‘F I.+)’am (Ur U,,) . ( )
Also, applying Eq. 6.3b to Eq. 6.4a and solving for w. in terms of U;:

£
’ Imz 4
“){_ = Nf +IZ(I'+yam) (Ur_Ur) (6.4b)

(6.3b)

*

It will be shown subsequently that predicted containment ring structural re-
sponses to fragment impact are insensitive to the value of e employed for
0<e<1.
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Finally, applying Egs. 6.2b, 6.3b, and 6.4b to Eg. 6.11, the following ex~

pression for U; is obtained:

Ljr/ = LJ - (= ’4‘6 LJR

Thus, using Eqg. 6.12, Egs. 6.2b, 6.3b, and 6.4b yield, respectively,

(4-€

Uf Uf ‘5:7;;( Ke )U
, ym +€

wr - wr Il+yam ( KC_ ) UR
, I m=zZ

Wr We - I (1 +yam) KC ) U

(6.12}

(6.13)

(6.14)

(6.15)

Since U; = (Ui + Ué)/z and w; = (Ui - Ué)/s, and similarly for the unprimed

preimpact guantities, it follows that

U’ = U,-—{I—-—Jul-'i L (2=

I+tyam 2 )

U, = UZ~'{I-+L+yam gi}( K.

where

m
Li+yam

ve= [U, +@-ywr] - [Ug-2z wy

[BU, +a U] =] U;-2zw]

=u, - UA = relative velocity of the impact points: C and A.

c

- I,
k= |+ T [ Lo-ayyt T, T 2

(6.16)

(6.17)

(6.18a)

(6.18b)

Note that subscript C of'Kc denotes that this quantity is associated with the

consistent-mass collision model.
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6.2.1.2 Lumped-Mass Collision Model

For this collision calculation, the ring segment is treated as having

only point masses ml and m_, at nodes 1 and 2, respectively, rather than a

2
distxibuted mass, as indicated schematically in Figs. 39b and 40b.

The im~-

pulse-momentum law and the kinetic energy conservation law can be applied to

this model also to obtain:

Translational Impulse-Momentum Law

(m|+mi,){ (Ur/- Ur)+b (w",_wr)]z /Ph

or
m, [ U:,— Ul] +m, [Uz/- uz ]= 1’,. (ring segment)
m.f ( U{_/" Uf ] = —?n (fragment)
Rotational Iﬁpulse-Momentum Law
m, [U -U,]Ys-m[U-UJu-7s
- - Pn [l -, IS (ring segment)
I{_ [w{-l" w{] = P" fJ §in 6] (Eragment)
Kinetic Energy Conservation Law
1 ,2+_f_ U/)Z+_’ (U,)z‘f—ll (a),)z
Zm.(u,) sz( 2 me 'F Z ‘f g3
| 2,1 2 1 z 1 2
= :Z‘ m, { L},) 4'2? m, (LJZ) 4’2{ an ( Ljf ) + 7 If: (LQF )
where

' {
b = ( '2' -7 )S
m,
m,+m, (see Fig. 40b)

YL =

and other guantities retain their previous meanings.

(6.19a)

(6.19b)

{6.20)

(6.21)

(6.22)

(6.23)

(6.24)

By using a reduction procedure similar to that described previously and
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introducing the coefficient of restitution, e, the following eguation which

is analogous to Eg. 6.1l is obtained:

{18 U+al,1-[U -z o] {==el(pUal,]-{Ur 20} e.s

By following a solution procedure similar to that described previously, one
obtains

U,/ = U, - m B l;;f ) Ugb (6.26)

(6.27)

U =U, = ma =) Ug

m, M, ( |+€

-
.‘h‘\
I
-
—h
+

me K. Ug (6.8
Y _mm Z |+€
wy = We I, (7K, ) Ug (6.29)
where m, m, 2 . m z+ m, ms ZE
LT Tmy +omd 2 B I, (6.30)

and where all other quantities retain their previous definitions.

6.2.1.3 Governing Equations

Summarized here, for convenience, are the governing equations of motion

for both the ring (target) structure and the rotor blade (fragment).

Ring-Structure Motion

. . R . . R
As described in Subsection 3.2, the governing egquations of motion for

either a complete ring or a partial-ring structure may be written as follows

+ . .
Note that Eq. 6.3l represents one of the two forms of the equations of ‘motion

discussed in Subsection 3.2; the second form, Eq. 3.1, could be discussed in a
similar fashion if desired.
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for the spatial finite-element representation of the complete assembled dis-

cretized structure {(CADS):

'x) *
[M]{j'¥} +fP}+[H]f‘ﬂ={F} (6.31)
where {q*}, {4} represent the generalized displacements and gener-
alized accelerations, respectively
{M] is the mass matrix for the CADS
{P} is an “internal force matrix" which replaces the
conventional stiffness terms [K]l{g} for small
displacements but also now includes some plastic
behavior contributions
{H] represents a "new" stiffness matrix which arises
because of large deflections and also plastic
behavior
{F*} denotes the externally applied generalized forces
acting on the CADS

It should be noted that all quantities in Eq. 6.31 refer to the global
Y,Z inertial reference system indicated in Figs. 41 and 42. For the case in
which the structure is subjected to distributed linear restoring springs as

depicted, for example, in Figs. 41 and 42, Egq. 6.31 becomes

. L *{ *
[MIfg*) + fP) + [HIEY = {FT - (K J13) e
where [Ks] represents the global effective stiffness supplied by the elastic
foundation and/or other "restraining springs". Further, it is presumed that

Eq. 6.32 has already incorporated within it all pertinent boundary conditions
and restraints as depicted, for example, in Figs. 42a through 42d.

As discussed in Subsection 3.3, the timewise solution of Eq. 6.32 may
be accomplished by employing an appropriate timewise finite-difference scheme
such as the central difference method. Accordingly, for the cases of CIVM
fragment impact or of prescribed externally-applied forces, Eq. 6.32 at time

instant j may be written in the following form:
(MIEFY, = (- TKg - 1PE-THIEE ),
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Let it be assumed that all gquantities are known at any given time instant t..

Then one may determine the generalized displacement solution at time t (i.e.,

3+l
{q*}j+1) by the following procedure. First, one employs the timewise central-

difference expression for the acceleration {&*}j:
o { ¥ ¥ *

ff}j T (at)® (1% }14' —Z{Z }1' b ii" ) (6.33a)
It follows that one can solve for {q*}j+l since {&*}j is already known from
Eg. 6.33 and all other quantities in Eq. 6.33a are known. However, a fragment-
ring collision may occur between time instants t. and tj+1; this would require a
“correction" to the {q*}j+l found from Eq. 6.33a. Thus, one uses and rewrites
Eq. 6.33a to form a trial value (overscript T):

iA§¥}1"+( = f“f}i +(At)2§'7'."}1v (6.33b)
g’ = 197 -3

ji'.- |

where

(6.33c)

4 t = time increment step
Note that tj = j(At) where j =0, 1, 2, ..., and {Aq*}o £ 0. also, no such trial
value is needed if only prescribed external forces were applied to the contain-
ment/deflection ring.
Let it be assumed that one prescribes at t = to = 0 (j=0) values for the
initial velocities {é*}o and external forces {F*}o, and that the initial stresses

and strains are zero. The increment of displacement between time t° and time tl

is then given by:

2
, : o (at)
“A%egn = ? g*}a (at) + {3*50 F (6.34)

where {&*}o can be calculated from

(MJ{?f&o = FJ‘%‘, (6.34a)

wherein it is assumed that no ring-fragment collision occurs between to and t
(accordingly, overscript T is not used on {Aqﬂl in Eq. 6.34).
144
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Fragment Motion

In the present analysis, the fragment is assumed to be undeformable and,
for analysis convenience to have semi-circular ends; hence, its equations of

motion are:

me Y1c =0 (6.35)
mf Z{_ = 0 (6.36) .
I1£ ) =0 (6.37)
where (Y ,Z.) and (?f,ﬁf) denote, respectively, the global coordinates
y; and acceleration components of the center of
gravity of the fragment (see Fig. 43)
0 represents the angular displacement of the
fragment.
In timewise finite-difference form, Egs. 6.35 through 6.37 become
Y )
4 . = A . (6.38)
( Y‘F )}+‘ ( Y_F ? s d
T .
(AZ{_)T'...; = (AZ{,){ (6.39)
T 6)
premd a .
(a8 )7-” ( i . | (6.40)

where overscript “T" signifies a trial value which requires modification, as

explained later, if ring-fragment collision occurs between t. and tj+l'

By an inspection procedure to be described shortly, the instant of
ring-fragment collision is determined, and the resulting collision—induced
velocities which are imparted to the fragment and to the affected ring segment
are determined in accordance with the analysis of Subsection 6.2.1.1 or 6.2.1.2.

6.2.1.4 Solution Procedure

The following procedure indicated in the flow diagram of Fig. 44 (and
described also in Ref. 18l), may be employed to predict the motions of the ring
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and the rigid fragment, their possible collision, the resulting collision-

imparted velocities experienced by each, and the subsequent motion of each

Step 2:

Step 3:

Step 4:

Let it be assumed at instant t ; that the coordinates {qg}, Y, , and
2, . and coordinate increments {Aq*}j,AYf ,» andAz, are kno?m. One
cag then calculate the strain increments Agj at all gauss stations j
along and through the thickness of the ring from Eq. 4.25.

Using a suitable constitutive relation for the ring material, the
stress increments Aoj at corresponding Gaussian stations can be
determined from the now-known strain increments Aej (see Subsections
2.3 and 4.3.4). Since the oj-l are known at time instant tj-l'

the stresses at tj are given by Oj = Oj-l + ch. This information
permits determining all quantities on the right-hand side of

Eq. 6.33, where for the present CIVM problem {F*}j is regarded as
being zero.

Solve Eq. 6.33 for the trial ring displacement increments {A;*}.
Also, use Egs. 6.38, 6. 39, and 6. 40 for the trlal fragment dzs-

(AZ ) 41 and (Ae)

+1°

placement increments (AY

j+1'

Since a ring-fragment collision may have occurred between tj and

tj+l' the following seguence of substeps may be employed to de-

termine whether or not a collision occurred and, if so, to effect

a correction of the coordinate increments of the affected ring

segment and of the fragment.

Step 4a: To check the possibility of a collision between the
fragment in the vicinity of point A of the fragment
with ring element i (approximated as a straight beam)
as depicted in Fig. 43, compute the Egigl_g;ojedtion
(P )]+l

, fragment, upon the straight line connecting ring nodes

i and i~l, as follows, at time instant t

of the line from ring node i to point A of the

341°
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T
( L 7“ .-[ Y Y 17+ cos (d )1,+I
- .

+ [Z. -ZA ]7-,,, sin (;f,; )1-,, (6.41)

where the Y,2 are inertial Cartesian coordinates.
Now, examine (pi)
in Fig. 43a.

+l. three cases are illustrated
T

Step 4b: 1If (pi)j-o- < 0 or if (p )j+l> s. where s; >0, a
collision between the fragment near pp:.nt A and
ring element i is impossible. Proceed to check
ring element i+l, etc. for the possibility of a
collision of fragment end A with other ring ele-
ments. ]

Step 4c: If 0 < (p ) sl, a collision with ring element
iis poss:.ble, and further checking is pursued.
Next, calculate the fictitious "penetration dis-

tance" (a ) of the fragment at end A into ring

i"9+1
element i by (see Fig. 43b):

.
(“i)r:—_[hu*d(hu -h,)+h e Jin f ]1*, (6.42)
where

1 : : :
= - = - £
2[hli + u.(h2i hli)] local semi~thickness of the ring

element which is approximated as
a straight beam in this “"collision

calculation”
hf
3 = tip radius of the fragment at the
T impact end A
a] +1 (—-)J +1 = fractional distance of si from node i
to where the collision occurs (recall:
a+f=1, and a, should not be con~
j*L T
fused with the angle {a, )J+1
T T T T B
co S(al 6.43
((;IA Yo = -[Y, - \{A] sin ) i, [Z Z] , (6.43)

= the projection of the line connectinq
node i with point A upon a line per-
pendicular to the line joining nodes
i and i-~-1l.
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Next, examine (a ) +1 which is indicated schematically in

Fig. 431, and is ngen by Eq. 6.42.

Step 4d: If ‘ai)j-(-l £ 0, no collision of the fragment near point A
upon element i has occurred during the time interval from
tj to tj 1" Hence, one can proceed to check element i+l,
etc. for the possibility of a collision of fragment end A
with ot:her ring elements.

Step 4e: If (al) 41 > 0, a collision has occurred; corrected coordi-
nate 1ncrbments (overscript "C") may be determined approxi--
mately by (see Fig. 43b):

[of T
(4 vf )?.H = (4 v+

);-*.“r(At)fo U ]sm(o( Dier (6.4da)

(4 Vc\:/,f )1 = (A W.f] (‘t*’[U‘;‘U{_ COS ( °< )7..,: {6.44b)

"
C T - ’
(286 )1.*' = (a6 }J'*' +(4t”) [U).,c - we ] (6.44c)
c T - / R gf '
¢ A\'{," )].ﬂ ('A\{ ()14—: —(t) fUz - Uz ] sint ")" (6.444)
T * ’
(4 \f,‘__‘ )iy = (AW, )it et U, -U,] coS(ol vy (6-040)
{2 64- 1+s =(4 VA )1*! (At} U U.J S'n(d* )1*’ (6-448)
. c T £ 4 ;T( )
(aw, ){H = (4 W; )1;' +(at )[U,— U‘ J eos (4, ye1 (6.44g)

where the after-impact quantities Ul vl 2+ Uz, and mf' may
. be found, respectively, from (Egs. 6.16 6.17, 6.13, and
6.15) or from (Egs. 6.26, 6.27, 6.28, and 6.29), which-

ever collision model one wishes to use, and where

-
" (a,;); [ time interval from actual
. + —
At = —("C’—‘L— = impact on ring element i
Rily :
until tj+l (6.45a)
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( URA )1 :[ﬁfﬂlua);' +d‘1:o-« (UZ)J—[(U{)j —Z (UJ‘{);
= preimpact relative velocity of
points A and C (6.45b)

The terms, in Egs. 6.44a through 6.44g, which are
multiplied by (At*) represent corrections to the
trial incremental quantities for the (At*) time in-
terval. Also, since At is small, one may use either
angle (Zi)j+1 or angle (ai)j in Egs. 6.44a through
6.44qg.

Step 5: Having determined the corrected coordinate’increments+ for the im-

pacted ring element, this time cycle of calculation is now comélete.

One then proceeds to calculate the ring nodal coordinate increments

and the fragment coordinates for the time step from tj+l to tj+2'
starting with Step 1. The process proceeds cyclically thereafter

for as many time increments as desired.

If, however, one finds no collision of fragment end A with any
of the ring segments, the checking process should be repeated
for any other possible fragment points of impact (such as end B,
for example) with the ring.

This solution procedure may be carried out for as many time steps as
desired or may be terminated by invoking the use of a termination criterion
such as, for example, the reaching of a critical value of the strain at the
inner surface or the outer surface of the ring. Appiopriate modifications
of this approximate analysis could be made, if desired, to follow the be-
havior of the ring and the fragment after the initiation and/or completion of

local fracturing of the ring has occurred.

*It should be noted that in this approximate calculation, only the coordinate
increments of the fragment and of the impacted ring segment are corrected.
Those for all other ring segments are regarded as already being correct. The
time increment At is regarded as being sufficiently small to make these ap-
proximations acceptable.
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6.2.2 Outline of the Collision-Force Method (CFM)

Although the collision-~force method will be described in detail in
Ref. 183, it is perhaps useful to outline briefly the essence of this approach.
In this method, the primary information predicted in the collision analysis
consists of the collision-induced interaction forces themselves. One may
readily identify the following three versions of the method (where the ac-
companying sketches indicate the associated qualitative behavior):
(a) The deformation of the fragment and the ring may be neglected

in the collision-interface region.

Collision During Collision
Starts Interaction Ceases
= > > t>t
t to tl t to t= tl 1
Ring
Fragment
|
(o4 Impact
Force
o t, t, t o t, t, t

where o denotes the total local deformation of the ring and fragment

at the center of the impact region (for this case @ £ 0).
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(b) The fragment and the ring deform in

a reversible elastic manner
in the collision-interface region.

Collision

During Collision
Starts Interaction Ceases
= > > >
t to tl t to t= tl t tl
\
\
| &
Impact
Force
t, t, t o t t t

This reversible elastic local indentation & is related to the

impact force F by the Hertz Law: F = ka3/2 where k is a con-

stant found from the elastic properties of the colliding ma-
terials.
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(c) The fragment and the ring may deform in a general elastic-~

plastic fashion in the collision-interface region.

Collision During Collision
Starts Interaction Ceases
= > &> >
t to tl t to t= tl t tl
\! i
N /
& /] |
Impact
o Force
{
1 ~
1
o t, [ t ° Z, T, t

Here both the ring and the .fragment exhibit permanent deforma-
tion in the "collision zone"; for this situation the impact
force may be expressed approximately by F = Na" where N and

n are constants depending upon the properties of the colliding
materials.

For all of the CIVM cases and CFM cases (a), (b), and (c), the containment

rings may undergo elastic-plastic membrane and bending behavior.
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6.3 Application and Evaluation of the CIVM Approach .

Described in this subsection is a set of very limited calculations in
which the CIVM approach has been employed. The calculations have involved the
impact of a single rotor blade (fragment) against: (a) a complete free circu-
lar containment ring and (b) a "fragment—-deflection" ring quadrant which is
supported at a selected station in one of several ways. These brief calcula-
tions serve to illustrate minimally (1) the effect of the type of ;ollision
model (consistent mass, CM, or lumped mass, LM), (2) the effect of the coef-
ficient of restitution e, (3) the effect of plausible ring material strain-
rate behavior, (4) calculation convergencé with an increasing number of ring
elements, and (5) preliminary comparisons with experimental response data for
a complete free ring subjected to impact by a single-~blade fragment. These

studies are described in the following.

6.3.1 Definition of Example Problems and Calculations

To illustrate the CIVM approach, the two categories of example problems
depicted schematically in Fig. 45 were analyzed: (a) a free complete circular ring
subjected to impact from a single-blade fragment, as represented by the con-
ditions pertaining to experiment in NAPTC Ring Tests 88 and/or 91 (Ref. 177)
and (b) a ring quadrant chosen to represent an example deflection device and
also subjected td single-blade impact. For the complete-ring example, pre-
liminary experimental ring response and blade motion éata {from NAPTC Ring
Tests 88 and 91, with the latter being the more reliable) are available for com-
parison with predictions. However, experimental data are not available for the

ring-quadrant cases.

Summarized in Table 1 are the pertinent geometric and test-condition
data for NAPTC Ring Tests 88 and 91. The (complete) free containment ring con-
sisted of 2024-T4 aluminum; for analysis, its uniaxial static stress-strain be-
havior was approximated (closely) as being elastic, perfectly-plastic (EL-PP)
with a yield stress Uo of 50,000 psi and an elastic modulus of 107 psi. A
single T-58 rotor blade which was fabricated from material designated as SEL-15
by General Electric was the fragment employed; for the present analysis, this
"fragment" is treated as being rigid. For the ring-quadrant examples, the same
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geometric, material property, and test conditions were employed as for the

Test 88 complete-ring example.

Shown in Tables 2 and 3 are the characterizing data for the sequence of
CIVM calculations carried out for, respectively, (1) the complete ring --
Runs CR-1B through CR-11B, and (2} the ring gquadrant examples -- Runs RQ-1B
through RD-9B. For all cases except CR-8B through CR-11B, the conditions
pertinent to NAPTC Test 88 were used; NAPTC Test 91 conditions were used for
calculation Runs CR-8B through CR~11B.

Shown in Table 2 for the complete-ring problem are (a) the number of
segments into which each guadrant of the ring was discretized for analysis,

(b) the interpolation fuhction used to represent the displacement field
throughout each ring element (the linear distribution of the inplane dis-
placement together with a cubic distribution of the transverse displacement
is termed LC; the cubic distribution of both the inplane and transverse dis-
placement along each ring finite element is termed CC for cubic cubic), {c)
the type of mass matrix used for each ring element (the mass matrix which is
variationally consistent with the assumed displacement field is termed C and
the lumped-mass matrix is termed L), (d) the ring material property represen-
tation (elastic, perfectly plastic EL-PP, or EL-PP-SR, where SR denotes
strain-rate sensitive behavior), (e) the type of collision model employed
(consistent mass, CM, or lumped mass, LM), and (f) the coefficient of impact
restitution e, where e = 1 represents a perfectly-elastic impact and e = 0

denotes a perfectly-inelastic impact.

For the partial~-ring or ring-quadrant cases, Table 3 identifies: (a)
the number of egual-length segments into which the ring gquadrant was idealized
for analysis, (b) the type of mass matrix used for each ring finite element
{L or C}, (c) the type of support (ideally clamped IC, or smoothly hinged),
and (d) the type of collision model {(CM or LM) used. For all cases, the IC
type assumed-displacement function over each ring finite element, EL-PP-SR,

and e = 1 conditions were used in these calculations.

The various matters examined in these studies are described in the
following.
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6.3.2 Effect of Type of Idealized Collision Model

The two types of idealized collision models, consistent-mass CM and
lumped-mass LM, discussed in Subsections 6.2.1.1 and 6.2.1.2, respectively,
have been employed in example calculations to examine their behavior and rela-

tive merits.

First, consider the CM collision model. A comparison of ring quadrant
calculations RQ-1B vs RQ-2B (see Table 3) have illustrated dramatically the un-
desirably sensitive nature of the CM collision model. For case RQ-1B, the
ring quadrant was modeled by 9 equal-length segments while for case RQ-2B, 10
equal-length segments were employed; in all other respects the conditions were
the same: the same fragment properties and initial conditions, the ring materi-
al properties EL-PP-SR, and e = 1 for the coefficient of restitution were em-
ployed. Dispite this slight change in the modeling of the ring (from 9 to 10
equal~length elements), the resulting responses of the ring quadrant and of the
blade fragment were dramatically different (see Fig. 46) when the CM model was
employed. Increasing the number of segments to 15 to model the ring quadrant
in case RQ-3B resulted in ring quadrant and blade responses that also differed
significantly from the 9-element case but very little from the 1l0-element case.

These results illustrate the sensitive nature of the CM collision model.

On the other hand, the use of the LM collision model for identical ring-
quadrant modelings: 9, 10, and 15 elements for cases RQ-4B, RQ-5B, and RQ-6B,
respectively, demonstrated improved convergence and much less sensitivity to
the number of segments (elements) used to model the ring quadrant. These re-
sults are illustrated in Fig. 47. Note that the 9-element result differs some-
what from the l0~element result, but the lO-element result and the l5-element
result are nearly the same; this suggests that the l0-element calculation pro-
vides a "converge‘" solution. Because of the greater consistency of the LM
collision model in comparison with the CM collision model, the LM collision
model has been selected for principal use, although additional CM collision

calculations have alsc been carried out.

Similar predicted ring response and blade response behavior for single-

blade impact upon a free complete ring is illustrated in Fig. 48. CM collision
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model cases CR-1B and CR-3B for ring discretizations 5-~5-5~5 and 9-6-6-6,
respectively, are compared with LM collision model case CR-5B which utilizes
ring discretization 1l0-6-6-6 (see Table 2); the latter calculation is assumed
to provide a converged result. Here again the CM results appear to exhibit
somewhat "erratic" behavior.

An approximate collision model which leads to very different results
when only a slight change in modeling of the ring is employed is undesirable
and unacceptable. A trustworthy approximate collision model should not exhibit
such extreme sensitivity to a slight change in the discretization modeling of
a containment ring or of a "deflector" ring structure. Accordingly, the CM
collision model has been set aside and the LM collision model has been adopted
for future calculationsuntil a better model has been devised.

The reasons for the erratic CM collision model behavior versus the more
satisfactory LM collision model features may be seen most conveniently perhaps
by examining the collision-imparted velocity behavior of the blade and the
affected ring element. It should pe recalled that the ring element was
idealized by a straight-line beam element (for the impact-collision calcula-
tion only). Consider the case in which the uniform beam element with length s,
mass m_, is struck by the blade tip at a point very near one end of the beam
element (for example, near node 1, see Fig. 40), in which case ¢ = 0 and 8 = 1;
assuming that the normal impulse resulting from the collision is 1 I the blade
c.g. normal-direction velocity change and angular velocity change due to impact
are given by Egs. 6.2 and 6.4 (also Egs. 6.20 and 6.22) as

P

U;f - U,c =7 Tmg (6.46a)

f, Asin®

I f (6.46b)

’ -
U)f - U){ -
where the angle 6 is the inclination of the blade to the normal of the beam

element.

The beam nodal velocity and the angular velocity changes predicted by
the CM collision model (Egs. 6.14, 6.16, and 6.17) for a collision occurring at
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nodei(a = 0 and B = 1) are

‘ - ym_ S b _ 4 b

(U, _Ul)cm— { = I+yam?2 J m, = 4 r (6.47a)
/ ym $§., Pn - P

(Uz“uz )cm:f '+I,+yam 2/ mp "~ 2 ™, (6.47b)
‘_ _ ym Pa _ 6 ._E“_

(Wy wk}CM— T, <yam m, S m, (6.47¢)

On the other hand, the LM collision model predicts the beam nodal velocity and
angular velocity changes (Egs. 6.26, 6.27) to be

£
1:" - m"r (6.48a)

(U-U ), =8

/ Pn
(UZ"UZ)LM = A my = 0 (6.48b)

/ _ L
(Wr ~Wrlp = 3 my (6.48¢c)

Comparing Eq. 6.47c with Eq. 6.48c, it is seen that, for a certain normal im-
pulse P,r the angular velocity change predicted by the CM model would be six
times larger than that predicted by the LM model. This larger consequent
change of the orientation of the beam segment for the CM model compared with
that for the LM model may subsequently lead to the larger change of the angle
0, and hence, the angular velocity change of the blade (see Eg. 6.46b) for the
subsequent impact(s) of the blade with the beam element will also be more
seriously altered. As observed in Fig. 46, the use of the CM collision model
with 1l0-element and l5-element modeling of the ring quadrant, after a certain
time stage, predicts that the angular velocity of the blade becomes negative
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. (the direction of rotation is reversed). No such reversal of the direction of
blade rotation is predicted when the LM collision model is used in corresponding

l0-element and l5-element calculations for the guadrant ring.

The above example case may serve to illustrate (a) the relative insensi-
tivity of the LM vs the CM idealized collision analysis and (b) associated

sources of the differences in predicted collision behavior.

Finally, it should be noted that at initial impact: (a) the angle © be-
tween the blade and the normal to the impacted ring segment and (b) the loca-
tion of the impact point on that impacted straight-line collision-model ring
segment (as reflected by the associated values of a and B) will be different
when one uses different numbers of ring segments to represent the ring. As
the number of ring segments increases, © will approach the true value for the
ring itself, but a and £ will continue to "fluctuate". These factors to-
gether with the sensitivity of the CM collision model are responsible for the
significant difference in predicted blade motion between the 9-element CM
case RQ-1B and the l0~element CM case RQ-2B.

6.3.3 Effect of Coefficient of Restitution

As noted in Subsection 6.2.1.1, the coefficient of restitution e is a
useful quantity for discussing "local impact" of two colliding bodies, since
this gquantity represeﬁts the ratio of the relative velocity of the two bodies
after impact to that before impact. Perfectly elastic impact is represented
by e = 1 whereas e = 0 denotes perfectly—-inelastic impaét (i.e., zero relative
velocity after impact). However, the importance of the value of e upon the
transient structural deformations of a fragment—impacted structure such as the

containment ring depicted in Fig. 45a is not obvious.

To examine this matter, CIVM calculation examples have been carried out
by using e = 1 and e = 0 in (1) cases CR-1B and CR-2B, respectively, (2) cases
CR-5B and CR-6B, respectively, and (3) cases CR-10B and CR-1l1lB, respectively.
Although these three categories of comparisons involved somewhat different
modelings, as can be seen from Table 2, it was found that to the scale of the

plots shown on Fig. 48, the differences in ring structural responses for e = 1

vs e = 0 in each category are almost imperceptible. A more critical comparison,
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however, is afforded by examining the predicted strains at given locations;
shown in Fig. 49 are strains predicted on both the outer surface and the inner
surface of the ring at two interesting 8~locations (8 = 13.5° and € = 49.5°)

for case CR-10B (e = 1) and for case CR-11B (e = 0) -- these cases involve the
best combination of modeling conditions of all cases listed in Table 2. It is
seen that generally the circumferential strains predicted for e = 1 are slightly
larger than when e = 0 is employed. It should be noted that initial impact
occurs at 9 = 44.,5°; in regions or quadrants well removed from the impact zone
or quadrant, the predicted strains are very small. For éxample, at © = 233°,
the peak outer surface strain is only about 3.35 x 10—3 in/in.

Another interesting effect of the coefficient of restitution is that the
number of ring-fragment collisions which has occurred up to a given instant
in time after initial impact is much larger for perfectly inelastic impact
(e = 0) than for perfectly elastic impact (e = 1). This is illustrated in
Fig. 50 where the accumulated number of impacts (ANI) is shown as a function
of time after initial impact for cases CR~10B and CR-11B. For perfectly~-elastic
impact, e = 1 (case CR~10B), the ANI reached 73 by 370 microseconds after initial
impact; no further ring-fragment impacts occurred thereafter (at least during
the period to 818 Usec after initial impact, during which the response was ex-
amined in these calculations). On the other hand, for perfectly-inelastic im-
pact, e = 0 (case CR-11B), the ANI reached 377 by 392 microseconds after initial
impact, with no further impacts occurring to at least 818 usec after initial
impact.

The large ANI for the perfectly-inelastic case (e = 0) as compared with
the perfectly-elastic collision calculation (e = 1) may be readily appreciated '
by recalling that for e = 0, the relative velocity of the contact points of the
blade and the impacted ring segment are zero. For the next time increment, At,
of the prediction process, the ring and the blade are treated in a trial incre-
mental calculation as moving independently of each other. Thus, the motion of
the impacted ring segment is "retarded" by the action of the internal fbrces
applied to it by its neighboring ring elements, while the fragment proceeds
.with "uninhibited” motion. The subsequent collision inspection, therefore,

frequently reports that during this At another collision has taken place —— and
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the process continues. But for e = 1, a nonzero relative velocity of the im-
pact points of these two objects occurs; subseguent collisions, hence, are less

frequent.

It is interesting also to note in the following tabulation that after the
impacts have ceased, the blade has gomewhat different cg~translational and ro-

tational velocities for the e = 1 case as compared with the e = 0 calculation:

After Impacts have Ceased

Pre~Impact e =1 e=0

Conditions
Blade Motion Quantities of Blade Case CR~10B | Case CR-11B
vy(in/sec) - 7884 - 2826.8 - 2138.4
Vz (in/sec) 0 - 3038.2 - 3015.4
wf(rad/sec) + 1638.3 + 3137.5 + 3015.4
Gf(deg) o + 111.4* + 105.9%*
af(deg) at TAII = 818 usec - + 192.0 + 170.3

It is seen that after all impacts have ceased, the blade has larger cg-
translational (Vy and Vz) and rotational (wf) velocities for the e = 1 case
than for the e = 0 case. Finally, had these calculations been carried out for
longer times, it is clear from the fragment and ring motions that further

blade-ring collisions would have been seen.

6.3.4 Strain Rate Effect

In the present analysis the fragment (blade) is treated as being rigid,
but the containment ring is deformable. Thus strain-rate dependent mechanical
behavior of the ring can be taken into account, and is expected to influence

primarily the response of the ring and secondarily the motion of the fragment.

As described in Subsection 2.3.3, it is assumed herein that strain rate

€.raises the uniaxial yield point of the material, approximately as follows:

*

At time after initial impact (TAII) = 370 usec, or time = 552 + 370 = 922 usec
x%

At TAII = 392 usec
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= o 1=I50]

oy = strain-rate dependent uniaxial yield stress

where

Go = gtatic uniaxial yield stress

and D and p are constants which depend upon the material involved. For 6061~-T6
aluminum, D = 6500 sec-1 and p = 4 are commonly used; these values have been
employed in the cases denoted by SR (in EL-PP-SR) in Tables 2 and 3. It is also
assumed that the elastic modulus of the material at room temperature conditions
is not affected by E.

The effect of é in the ring~blade problem can be seen by comparing the
predicted ring and blade responses for case CR-5B (EL~PP) versus case CR~7B
(EL-PP-SR) ; these cases are identical except for the inclusion of the strain-
rate effect in case CR-7B. Let it suffice for present purposes to note that
the inclusion of the € effect in case CR-~7B manifests itself in making the
ring "stiffer" than in case CR-5B (EL-PP); the peak deformations of the ring
were reduced slightly by including the € effect. The result is in accord with
the more detailed é—affected structural responses described in detail in Sub-

section 5.3.6.3.

Finally, some blade-motion data (which is of secondary interest) for
cases CR-5B and CR-7B are compared in Table 4; these include the fragment cg-
velocity components Vy and Vz and the angular velocity mf of the frégment
(blade). From Table 4 it is seen that the predicted velocity histories of the
blade for the EL-PP and the EL-PP-SR calculations are very similar. In fact,
the "residual" velocities of the blade after no further impacts occur (up to

at least TAII = 818 usec) differ only slightly are are as follows:
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TAII for . .
Case Last Impact ANI Vy(;n/sec) Vz(ln/sec) mf(rad/sec)
(usec)

CR-5B 348 89 - 2791.0 - 2999.4 + 2611.7
EL~PP

e=1

CR~7B 327 47 - 2912.0 - 2991.3 + 2621.5
EL-~PP~SR

e =1

The most interesting difference in these results is that the accumulated number
of impacts to "impact cutoff” is 89 and 47 for the EL~PP case and the EL-PP-SR
case, respectively. That is, the inclusion of "strain-rate stiffening” of the

ring reduced the predicted number of impacts (up fo at least TAII = 818 usec);

this, incidentally, reduces the computational effort and time.

6.3.5 Comparison of Predictions with Experiment for a
Complete Free Ring Subijected to Rotor Blade Impact

Having examined the effects of various features in the CIVM approach
and various modelings of a free complete circular "containment ring" subjected
to impact by a "nondeformable" single rotor blade, it is now perhaps of in-
terest to compare predictions with measurements from NAPTC Tests 88 and 91
(see Table 1). These comparisons are regarded as tentative because of the
facts that:

(a) the time from the instant of initial impact until the
“time instant" of each photograph in each experiment
is uncertain by as much as, perhaps, about 200 to 300
microseconds* (that is, initial impact may have occurred
earlier than reported in Ref. 184 by about 200 to 300
Hsec) and

(b) the present CIVM analysis contains some simplifying
assumptions which expedite the present study but
which do not accommodate some aspects of the antici-
pated and observed behavior (these deficiencies could

be remedied in future work).

Y .
This uncertainty will be essentially eliminated in planned forthcoming tests
of this type through the use of improved techniques.
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The predictions discussed in this subsection are limited to only the
best two calculation cases for each experiment, Tests 88 and 91. Accordingly,
shown in Fig. 51 are deformed-ring profiles and blade locations at a sequence
of times for: experiment (NAPTC Test 88), case CR-5B (EL-PP, e = 1), and case
CR~7B (EL-PP-SR, e = 1). The plotted points represent the locations of the
node points or ends of the finite elements or segments into which the ring
has been discretized for analysis. For comparing predictions with experiment,
the initial impact location was matched to that observed‘experimentally. It
is seen that there is reasonably good agreement between predictions and ex-
periment, with calculation case CR-7B providing the better comparison. In
Fig. 51, the time interval between the "instant of impact" and the photograph

for which the deformed-ring data were measured is as reported in Ref. 184.

Figure 52 shows a similar comparison between predictions and experimental
results measured for NAPTC Test 91; the predictions are for case CR-10B (EL-PP-SR,
e = 1) and case CR-11B (EL-PP-SR, € = 0). Hence, Seen again are the effects of
perfectly-elastic impacts (e = 1) versus perfectly-inelastic impacts (e = 0);
on the scale of Fig. 52, this coefficient-of-restitution effect is minor. Here
also (1) it is seen that the predictions agree favorably with experiment, and

(2) the "experimental instant of impact"” used is as reported in Ref. 184.

A preliminary assessment in Ref. 185 of the Ref. 184 data for NAPIC
Tests 88 and 91 suggests that the actual instant of impact in each case may
have been significantly earlier than reported in Ref. 184. For NAPTC Test 91,
for example, it was estimated in Ref. 185 that the actual instant of impact was
perhaps about 200 to 300 microseconds earlier than implied in the experimental
data of Fig. 52 and Ref. 184. Hence, as a matter of curiosity, an “impact time
correction” of 240 usec has been applied to the NAPTC Test 91 data and the re-
sulting comparisons with the case CR-10B predictions are shown in Fig. 53. It
is seen that the predicted ring responses are somewhat larger than the Test 91
data show when a revised instant of initial impact is used. As mentioned in
the beginning of this subsection, this discrepancy may possibly be due to the
uncertainty of the time elapsed from the instant of actual initial impact to
the "test-recorded" initial impact instant, and may also be due to the simpli-

fying assumptions employed in the present approximate predictions. Further
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experimental and theoretical studies of this situation are required.

With reference to the results shown in Figs. 51-53, it is seen that the
predicted ring responses agree fairly well with experiment, but the observed
blade motion (which is of secondary interest in the present context, but of
considerable interest in other situations) is not in satisfactory agreement
with experimental observations. As for the ring itself, the method of large
deflection, elastic~-plastic transient response analysis has been evaluated
and its accuracy verified by comparison with reliable experimental data in
Subsection 5.3 and, hence, is not a source of significant error. However,
one source of error is readily apparent: in the experiments, the rotor blade
undergoes a significant amount of deformation over a portion of its length at
and near the "impact tip" during a brief period following initial impact;
little further blade deformation is observed at later times. The blade, hence,
becomes a shortened fragment with a smooth curved portion at one end while the
other end essentially retains its pre-impact configuration. Accordingly, the
"new" fragment which continues the blade-ring interaction process often has
the same mass as before but has a reduced moment of inertia -~ this factor
probably accounts for much of the discrepancy between the observed and the pre-
dicted blade motion. Other neglected factors which may contribute to the ex-
perimental-theoretical discrepancies include: (a) the neglect of the true ma-
terial properties of the blade in the collision calculation itself (but this
should be minor as results from the e = 1 and e = 0 extremes show) and (b)

forces arising with and energy loss by gouging the ring by the blade.

6.3.6 Responses of a Variously~Supported Ring
Quadrant to Rotor Blade Impact

As noted in Subsection 6.3.1 and in Figs. 36b and 45b, partial rings are
of interest as possible fragment deflection devices. Accordingly,\illustrative
calculations have been carried out for certain ring guadrant configurations
(see Fig. 45b) subjected to impact by a single rotor blade. These rihg-quadrant
configurations are supported in one of the three following ways: (1) ideally
clamped (IC) at 6 = 0°, (2) smoothly hinged (H) at & = 0°, or (3) smoothly
hinged (H) at 9 = 27°. The pertinent CIVM calculation features are summarized
in Table 3, and include cases RQ~1B through RQ-9B; identical "blade release"

164



conditions at t = 0 are used for all cases. The Test 88 conditions reported in
Table 1 were used for these calculations. No experimental data, however, are

available for comparison with these predictions.

For the ideally-clamped guadrant ring, the predicted ring quadrant and
blade responses have already been noted for cases RQ-1B through RQ-3B and cases
RQ-4B through RQ-6B in Figs. 46 and 47, respectively. The results from case
RQ-7B differ little from those of case RQ-6B and hence are not shown here.

Compared in Fig. 54 are the responses of guadrant rings with an ideally-
clamped end (case RQ-5B) and a smoothly~hinged end (case RQ-8B). These responses
exhibit the expected qualitative differences. The "blade diversion angle"

(¢, see Fig. 36b) is predicted to be approximately 42.6°‘;or both the IC case
RQ-5B and the hinged-end case RQ-8B.

The influence of locating the smoothly-supported hinge at 6 = 27°
(case RQ-9B) rather than at the end, 6 = 0°, of the quadrant ring is depicted
in Fig. 55 by the sequence of deformed ring quadrant configurations for case
RQ-9B. For this case, the rotor blade cg-trajectory diversion angle ¢ is
43.3°.

These examples, RQ~1B through RQ-9B, illustrate only a few of the many pos-
sible situations (various ring boundary conditions, various fragments, etc.) and
configurations (variable thickness ring, etc.) which may be worthy of study for frag-
ment deflection purposes, and to whic¢h the CIVM analysis can readily be applied.

6.4 Comments on Potential Extensions of the CIVM

aApproach to More Complex Problems

In this report the CIVM approach has been illustrated and applied to only
a few (see Fig. 45) of the many situations of interest; also, some simplifying
approximations have been employed. One fragment having a simple shape has
been used, rather than (a) many fragments (Fig. 37c) or (b) a fragment of
complex geometry (Fig. 37b); the useful but drastic simplifying assumption that
the fragment acts as a nondeformable body was employed. At this point it is
useful perhaps to comment briefly on steps which might be taken within the CIVM
context to perform a more physically-realistic analysis and/or to analyze con-

tainment/deflection devices which are subjected to more complicated fragments
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and/or conditions.

It is convenient for discussion to consider two categories of problems:
(1) those in which various kinds and numbers of fragments are involved but in
which the fragments are all nondeformable and (2) a category analogous to (1)
except that all of the fragments are treated as deformable. There could also
be analyses in which for a certain period of time in the impact-interaction-
response behavior, the fragment(s) is regarded as deformable, and in another
appropriately-selected time period as nondeformable. In addition to consider-
ing problems in which all motion and deformations occur in oné plane (planar
problems) as is the case throughout this report, more general motion and de-
formation conditions could be analyzed. However, discussion herein shall be

restricted to planar problems.

First, let attention be directed to cases involving only nondeformable
fragments. Beyond the simple single-fragment problems dépicted in Fig. 36,
one could apply the CIVM approach readily to analyze the interaction with con-
tainment-deflection rings of complex single fragments such as those shown in
Fig. 37b or multiple fragments such as shown in Fig. 37c. Only the bookkeeping
becomes more complicated and lengthy than for the Fig. 36 category of problems;
no conceptual or analytical difficulties are anticipated. 1If in addition to
interacting with the ring (and/or with each other) the fragment(s) collide
with one or more blades of the “"remaining" rotating rotor and hence receive a
new kick, the bookkeeping becomes still more lengthy and complex, but no basic
difficulty is anticipated. However, as noted earlier, treating the fragment(s)
as nondeformable will lead to progressively less accurate blade-fragment motion
and accordingly to less reliable predictions of subsequent blade-rotor collisions,
blade~ring collisions, and ring structural response. How important this effect
will be upon the predicted containment/deflection capability of a given system
cannot be ascertained at present. However, it is believed that some modification
of the analysis should be made to provide more accurate blade-motion predictions
for the time period following the initial collision-interaction of the fragment
with the containment/deflection ring than is currently afforded by the present

rigid-fragment analysis.

Next, therefore, it is appropriate to consider modifying the analysis
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to account for deformable fragments. Starting with the simple single-fragment
configurations of Fig. 36, one could proceed logically to treat the blade as
deformable by modeling it as consisting of an appropriate number of finite
elements (or segments). While somewhat more complex inspection procedures
would need to be devised to determine when and where ring-fragment collisions
would occur, the same basic collision-interaction calculation as now employed
could be used; as done for the ring itself at present, the blade could be
treated as behaving in an EL-SH~SR manner. In this scheme finite-element
modeling of both the ring and the blade could be employed throughout the analy~-
sis from initial impact until all impact/interaction behavior of interest had
occurred; more degrees of freedom and more computing time than currently needed
in the present rigid-blade analysis would be involved. Some economies could
perhaps be effected by treating the blade as deformable in the initial impact
stage and at other critical collision-interaction stages, and by treating the

blade as nondeformable for the "in~between” periods.

Another useful variant of this analysis extension might be to treat the
ring always and the fragments (always or "intermittently") as deformable but
to treat the still-spinning rotor disk and the remaining attached rotor blades
as nondeformable. Further study is needed to determine an optimum analysis mix

for both accuracy and computational efficiency.

Finally, cognizance should be taken of one aspect of the immediate col-
lision analysis which should be improved -~ the seriousness of this defect with
respect to predicting efficient, assured containment is not entirely clear.

In the present study, the fragment-ring collision has been idealized as a process
“in which the applied and reactive forces could occur only in a direction per-
pendicular to the surface of the impacted ring segment. For certain cases, this
wmay be a very good approximation; for other cases (where gouging of the ring by
the blade is imminent or present, for example), there would be also both applied
and reactive force components in a direction parallel to the surface of the ring.
Hence, a modification of the collision analysis to predict and to take into
account such "shearing forces" == as in machining and tool-wear studies -- would
be a useful step tow;rd a more realistic simulation of the actual physical situ-

ation for certain cases.
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SECTION 7

SUMMARY AND CONCLUSIONS

7.1 summary

The present study is devoted principally to developing and wvalidating a
spatial finite~element (FE) variational method for analyzing the large-deflection
elastic-plastic transient deformations of éimple structures. As a result, ac-
curate FE predictions of transient strains and large transient deformations of
simple structures subjected to known forcing functions have been demonstrated
{see Section 5 and Subsection 7.2). a praétical problem to which the present
method of analysis has been applied is that of containment/deflection struc-

tural ring responses to engine rotor-blade fragment impact.

The equations which govern the large deflection dynamic and/or static
responses of a solid continuum are discussed in tensor form for convenience and
generality. Elastic, elastic-plastic, and strain-rate dependent material be-
havior are considered. Under the restriction that the strain is small, con-
siderable simplification is attained by assuming that the strain can be de-
composed into an elastic (thermodynamically reversible) part and a plastic
(thermodynamically irreversible) part. The Mises-Hencky yield criterion and
its associated flow rule are adopted to describe the elastic-plastic behavior
of an initially homogeneous isotropic material. The strain-hardening behavior
is taken into account by using the mechanical sublayer model. The strain-rate
effect is approximated by assuming that the uniaxial stress-strain relation is
affected by strain rate, only by a quasi-steady increase in the yield stress

above the static-test yield stress.

The spatial assumed~displacement finite-element (FE) approach is used to
approximate the true infinite degree~of-freedom description of the actual con-
tinuum by one which involves a finite number of degrees of freedom. The finite-
element concept is used in conjunction with the Principle of Virtual Work and
D'Alembert's Principle to obtain the equations of motion of a general solid con~
tinuum which is permitted to undergo large-deflection elastic-plasti¢ transient
deformations. The resulting equations of motion are developed in two forms:

(a) the conventional form, and (b) an improved form; the latter represents a
new development. In both forms, the Lagrangian description for displacements,

strains, and stresses is employed; that is, the initial undeformed configuration
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of the continuum is used as a reference for the subsequent motion of the continu-
um. The resulting equations of motion consist of a finite-size system of second
order ordinary (coupled) nonlinear differential equations with the unknowns to
be determined being the values of the degrees of freedom (generalized displace-
ments) at the nodes of the finite-element assemblage which represents the con-
tinuum. This set of equations is solved timewise by using a direct numerical
integration scheme with an appropriate temporal finite~difference approximation

operator.

The formulation is developed in detail for a curved beamlike structure
which undergoes planar deformations with: (a) zero transverse shear deformation
{Bernoulli~Euler~type of deformation behavior) or (b) nonzero transverse shear
deformation (Timoshenko-type of deformation behavior). The nonlinearities re-
sulting from both large-deflections and elastic~plastic material behavior are
included.

For the Bernoulli~Euler-type of curved beam element, two sets of assumed
displacement functions have been employed: (1) roth the axial and the transverse
displacements are represented by cubic order polynomials with small-amplitude
rigid~body modes included (this is termed a CC element) and (2) the axial dis-
placement is represented by a first-order polynomial while the transverse dis-
placement is represented by a cubic-order polynomial, with small-amplitude

rigid-body modes included (this is termed an LC element).

As for the Timoshenko-type of curved beam elements, four sets of assumed
displacement functions each with various orders of polynomials to approximate

the transverse displacement have been studied.

An assessment of this method of analysis is made by means of a sequence
of problems for beam and ring example structures which are subjected to transient
mechanical loading or to initial impulsive loading; the present predictions are
compared with reliable experimental data and/or independent predictions (finite-
difference and/or analytical). The temporal central-difference finite-differ-
ence operator is used for most of the calculations; however, the use of Houbolt's

method and Newmark's method is also explored for the present nonlinear problems.

The structural response predictions and evaluations were carried out in
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the following categories:

(a)

(b)

Small-Deflection Linear-Elastic Transient Response

€8]

(2)

An impulsively-loaded simply-supported beam was analyzed
by the present FE method with the Bernoulli~Euler type of
IC element and the predicted responses were in excellent
agreement with the exact normal mode solution. This com~
parison served principally to verify the correctness of
the computer program.

A free-free "thick" beam loaded by a transieﬁt concentrated
load at midspan was analyzed by using the several types of
Timoshenko-type finite elements developed in this study.
The present predictions were compared with the available
exact modal solution.

Large-Deflection Elastic-Plastic Transient Response

Included in this category were the following impulsively-loaded

structures: (1) a clamped-clamped beam, (2) a ring sector with

clamped ends, and (3) a free ring. Transient response pre-

dictions carried out by using the present finite-element ap-

proach were compared with experimental measurements (of

transient strains and large transient deformations) and

finite difference predictions.

The problem of engine rotor fragments interacting with either a complete

(containment) or a partial (deflection) structural ring is discussed as an ex-

ample application of the present analysis to a problem of current practical in-

terest. Energy and momentum considerations are employed to predict the collision-

induced velocities which are imparted to the colliding fragment and to the af-

fected ring segment; the associated analysis method is termed the collision~-

imparted velocity method, CIVM. This collision analysis is combined with the FE

analysis developed in this study to permit one to predict the resulting large

deformation responses of containment/deflection rings. Comparisons with limited

experimental data are also given.
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7.2 Conclusions

A spatial assumed-displacement finite-~element variational formulation
and solution scheme for the prediction of large-deflection elastic-plastic
transient responses of curved beamlike sStructures has been developed and has
been implemented in a computer program; both the older conventional FE formu-
lation and a new improved FE formulation for analyzing this class of problems
have been developed and discussed. The accuracy and versatility of these FE
methods of analysis have been demonstrated on problems for beam and ring ex-
ample structures which are subjected to transient mechanical loading or to
initial impulsive loading. The present finite-element-predicted responses are
found to be in reasonably good agreement with experimental measurements and/or
with independent predictions (finite-difference and/or analytical). Also, the
present finite-element analysis combined with the impact analysis has been
applied to the prediction of containment/deflection structural ring responses
to engine rotor fragment impact; the predicted ring responses agree favorably

with experiment.

On the basis of the present study, the following conclusions may be
stated:

(1) The improved finite-element formulation is more efficient and
economical for computing the large-deflection elastic-plastic
transient responses of simple structures than the conventional
finite-element formulation.

(2) The 3-point central-difference time integration method gives
very accurate amplitude and phase transient predictions as
long as the time increment size used is small enough. The
largest permissible time increment size At which will avoid
calculation instability is affected by the severity of the
structural responses; that is, large-deflections play the
key role in stiffening the structure and thus requiring a
smaller At than that required for small deflection transient
response problems to avoid numerical instability. Also, the
large~deflection effects render Houbolt's method and Newmark's

method no longer "unconditionally stable" as they are for
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(3)

(4)

(5)

small-deflection problems. This is consistent with the

observations in Ref. 75.

The Bernoulli-Euler~type of curved beam element with CC
assumed-displacement functions exhibits significantly im-
proved predictions, especially for the strain, over the
Bernoulli-Euler~type of curved beam element with IC
assumed-displacement functions for a given number of de-
grees of freedom. Also, the former converges very rapidly,
but at the expense of a smaller allowable time increment

step size compared with the latter.

The Timoshenko-type of beam element with linearly-varying
assumed-displacement functions (Tl) can provide accurate
small-displacement linear-elastic transient response pre-
dictions only if the element size is kept small enough.

However, in order to obtain more accurate coarse-mesh

solutions, one would need to employ assumed displacement poly-
nomial functions of higher order. Better and more efficient solu-
tions, however, are obtained by using T2, T3, or T4 elements, with
the T4 type of element being the best. Unfortunately, however,
pertinent experimental and/or predicted results for large-
deflection, elastic-plastic transient responses with im-

portant transverse shear deformation behavior against which

to compare predictions which could be readily accomplished

with the present FE analysis have not been located.

It is substantially more efficient to use the lumped-mass
matrix version (L) rather than the consistent-mass matrix
version (C) of the finite-element method for typical tran-
sient response problems of the present class; the allowable
At is larger for the former than for the latter. Further,
since the transient responses predicted by using the C and
the L finite-element calculation are quite close to each
other, it is recommended that the lumped-mass (L) version

of the finite-element method be selected as being more
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efficient (and adequate) for engineering prediction purposes.

(6) For the present planar structures, it has been demonstrated
that the present FE method provides accurate predictions
of transient structural responses, both deformations and
strains, for strains at least as large as about 5 per cent.
(It is reasonable to hope that reasonably accurate strain pre~
dictions will be provided by this method for strains as large
perhaps as 20 per cent which approaches fracture levels of

strain for many common aerospace structural materials.)

(7) Based upon the limited comparative studies reported iﬁ
Subsection 5.3.7.3 between the finite element and the
finite difference method, the lumped-mass improved-
formulation finite-element method is competitive with
the finite difference method with respect to efficiency
(computing time and cost) and accuracy for predicting
large~deflection elastic-plastic transient responses of

simple structures.

(8) The use of the present approximate CIVM approach

(Section 6), in conjunction with either the present finite-
element procedure or the finite-difference method provides
reasonable estimates of the fragment and ring responses
arising from single-blade-fragment impact upon a struc-
tural ring. Several deficiencies in the present "first-
cut" CIVM analysis could be remedied readily by further
work, and would clearly lead to improved qualitative and

quantitative predictions.

7.3 Suggestions for Further Study

Possible areas of interesting and useful further research along the

lines of the present investigation are described in the following.

Although one can always resort to numerical experimentation to provide
a suitable time increment step size to insure stability, it would be desirable
to develop criteria'for.the maximum allowable time increment step for the large-
deflection nonlinear structural transient response problems of the present type;

a useful beginning for this type of analysis is described in Chaptet 3 of
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Ref. 186. Also, before more definite conclusions can be drawn as to whether any
one timewise operator is superior to the others, more extensive studies than

could be carried out here are required.

Pertinent theoretical and/or experimental results for large-deflection
elastic~plastic transient responses of beamlike structure having significantly
large transverse-shear deformations have not been found for checking the present
Timoshenko-type of finite element; the evaluation of the present Timoshenko-

type element for this kind of problem, therefore, remains to be accomplished.

The present-developed finite-element analysis method fqr predicting
large-deflection elastic~-plastic transient structural responses is quite gen-
eral and pertains to any type of loaded body. However, in this report, its
application is demonstrated only for simple (curved and/or straight) beamlike
structures whose significant deformations are confined to one plane. An ex-
tension and application of the present method to analyze plate and shell struc-
tures or to structures with complicated geometric shape, material properties,
and boundary conditions would be of considerable interest and value, and would
provide useful versatility to permit analyzing this group of nonlinear three-
dimensional~deformation transient-response problems -- which comprises the
largest group of practical-interest problems of this type. Although there
are many ways of constructing a lumped-mass matrix (frua finite~difference
equations, for example) there needs to be developed for these general dynamic

systems, better rational ways of constructing the lumped mass matrix.

More definite conclusions need to be drawn as to which of the two gen-
eral methods the finite-difference or the finite-element method will prove to
be superior for particular types of problems in this nonlinear transient re-

sponse category.

Further, the combining of the finite~difference and the finite-element
procedures in space to take maximum advantage of the special merits of each
method for appropriate parts of the structure (that is, one might use the
finite-difference procedure for smoothly-varying regions of the structure and
the finite-element procedure in regions of structural irregularities) is also

suggested for further research.
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Finally, as noted in Subsection 6.4, the extension of the present
collision-imparted velocity method to perform a more physically-realistic
analysis (for example, to account for the roughness of the ring-fragment
impact surfaces, the deformations of the fragment, etc., and to analyze con-
tainment/deflection devices which are subjected to more complicated fragment
impact and/or conditions) would be a useful variant of this collision-imparted-

velocity method of analysis.
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TABLE 1

DATA CHARACTERIZING NAPTC RING TESTS 88 and 91

Ring Data
Test 88
Outside Diameter (in) 17.619
Radial Thickness (in) 0.153
Axial Length (in) 1.506
Material 2024-T4 Aluminum
Elastic Modulus E (psi) lO7
PP Yield Stress 00 (psi) 50,000
Fragment Data

Type T-58 Single Blade
Material SEL-15
Outer Radius (in) 7.0
Fragment Centroid from Center of

Rotation (in) 4.812
Fragment Tip Clearance from Ring (in) 1.657
Fragment Length (in) 3.5
Fragment Length from CG to Tip (in) 2.188
Fragment Weight (1bs) 0.084
Fragment Moment of Inertia about its

CG (in 1b sec?) 2.163x10"4
Failure Speed (RPM) 15,374.3
Fragment Tip Velocity (ips) 11,270.
Fragment Centroidal Velocity (ips) 7,748.
Fragment Initial Angular Velocity (rad/sec) 1,610.
Fragment Translation KE (in 1b) 6,525.
Fragment Rotational KE (in 1lb) 280.4
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Test 91
17.619
0.152
1.506
2024~T4
7
10

50,000

T-58 Single Blade
SEL~-15
7.0

4.812
1.658
3.5

2.188
0.084

2.163x10” %
15,644.4
11,467.
7,884.
1,638.3
6,756.
290.3
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TABLE 4

BLADE MOTION AND IMPACT DATA FOR CASE CR-5B(EL-PP)
VS. CASE CR~-7B(EL-PP-SR)

Case CR-5B Case CR-7B
(EL-PP) (EL-PP~SR)
TAII ANI v v w ANI v v W
(usec) LY 2 f. A 2 £
(in/sec) (in/sec) (xrad/sec) {in/sec) (in/sec) (rad/sec)
Pre~-Impact| O ~7748. 0 +1610.0 0 ~7748.0 0 +1610.0
0 1l -6786.9 -1125.3 +2249.9 1 -6786.9 -1125.3 +2249.9
16 2 -6604.2 =1267.7 +2266.5 2 -6523.8 ~1330.4 +2273.9
23 5 =6332.4 -1l476.1 +2289.4 6 -6231.8 =-1551.7 +2297.3
27 7 -6216.2 =-1561.6 +2297.3 7 -6099.5 -~-1647.6 +2305.8
35 10 -6018.5 =~-1702.0 +2308.1 |11 -5893.0 ~1792.2 +2316.9
36 11 -5871.2 +-1802.6 +2314.3 |12 ~5877.9 -1802.6 +2317.6
44 — —— — - ’15 -5599.2 -1989.5 +2330.3
45 14 -5614.4 -1970.0 +2322.0 |~- —— - i
50 15 -5457.2 -2068.6 +2325.7 |17 -5452.6 -2084.6 +2336.9
6l 17 -5300.2 -2164.0 +2329.4 |21 ~5132.4 ~-2285.5 +2354.6
71 19 -4934.2 -~2377.3 +2343.9 |-- - - -
72 e - - - 24 -4933.6 ~2406.7 +2373.7
79 - - - - 25 -4894.9 -2430.2 +2380.0
85 21 ~478l1.7 =-2463.1 +2360.5 |-~ - - -
141 - —— - - 26 -3967.9 =-2765.6 +2406.8
144 22 ~4449.1 -2581.8 +2370.7 |-- el e -
168 25 =-3827.3 -2786.4 +2391.7 |-~ - - -
178 28 =3724.7 -2815.7 +2396.5 |-- - - —
188 - - - - 28 -3477.0 =2895.3 +2447.0
189 32 -3569.7 =-2857.8 +2405.6 |-~ - - -
198 35 -3459.5 -2886.0 +2414.6 |-~ — - -
210 42 =3353.0 =-2911.6 +2426.9 |- - - -
215 -— - - - 29 -3453.0 -2901.0 +2451.3
222 45 ~-3305.6 -2922.4 +2434.5 |-~ e - -
246 53 -3233.8 -2937.9 42450.2 |31 -3287.9 =2939.5 +2488.1
255 58 =-3213.0 -2942.2 +2456.3 |-- - - -
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TABLE 4 (CONCLUDED)

Case CR-5B Case CR-7B
(EL-PP) (EL-PP-SR)
TAII | ANI Yy V2 Ye ANI Ve Ve “e
(usec) (in/sec) (in/sec) (rad/sec)|ANI  (in/sec) (in/sec) (rad/sec)
264 6l -3199.8 -2944.8 +2460.8 |-~ - e —
273 63 ~-3032.1 -2971.7 +2513,.3 | -~ - - -
274 - - - - 32 -3110.8 -2966.9 +2544.9
298 65 ~2951.6 -2982.0 +2543.2 {39 -2996.9  -2982.2 +2587.6
307 71 -2888.0 =-2989.6 +2567.9 | -- - - -
310 - - -~ - 42 ~2941.6 -2988.9 +2611.1
316 76 ~-2841.8 ~2994.6 +2587.4 {43 -2939.2 -2989.2 +2612.2
326 80 -~2816.8 =2997.1 +2598.7 | 46 =-2922.5 -2991.0 +2620.2
327 81 -2812.7 -2997.5 +2600.6 | 47 -2912.0 -2991.3 +2621.5
335 84 -2802.0 -2998.5 +2605.8 |" " " "
345 87 -2794.9 =-2999.1  +2609.5 |" " " "
347 88 ~2794.5 -2999.1 +2609.8 |" “ " o
348 89 -2791.0 =-2999.4 +2611.7 |" " " "
. " " " " " " " "
818 89 -2791.0 -2999.4 +2611.7 147 -2912.0 -2991.3 +2621.5
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FIG.1l NOMENCLATURE FOR SPACE COORDINATES AND DEFORMATION
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FIG.2 NOMENCLATURE FOR STRESS TENSORS
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FIG.3 NOMENCLATURE FOR A POSSIBLE FINITE ELEMENT REPRESENTATION OF
A GENERAL TWO-DIMENSIONAL STRUCTURE
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Input Data: Structure Geometry;
Material Properties; Initial,and
Boundary Conditions; External Forces
as Functions of Space and Time;

Structural Discretization.

1

Form the Mass Matrix for the Entire
Structure, [M], by Assembling the
Element Mass Matrix [m].
Impose B.C. on [M].Then, Factorize

[M] into {L] [LIT

m(Time Cycle Index) = 0

Evaluate the Generalized
Nodal Force {F*}t by
[}
Assembling the Element
Nodal Forces {f}t

<}
Evaluate {Aq*}, and {q*}
t t
1 1
4
m=m+ 1 l
Evaluate (A’Yij) tm
I Evaluate {p}t and (h] {q}t
13 m ™ ™
Evaluate (S J)t
m
Evaluate {f}t
m

Evaluate ({F*} - {P} - [H]{q*})t

m
Evaluate {Aq*}t and {q*}t
m+1 m+l
Is m Equal to Prescribed Number of Total Time Cycles? No

Yes

]Stop I {a) Improved Method

FIG. 4 FLOW CHART FOR SOLUTION PROCESS OF STRUCTURAL LARGE
DEFLECTION ELASTIC-PLASTIC TRANSIENT RESPONSES
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Input Data: Structure Geometry;
Material Properties;Initial and
Boundary Conditions; External Forces
as Functions of Space and Time;

Structural Discretization.

Form the Mass Matrix for the Entire
Structure [M], by Assembling the
Element Mass Matrix [m].
Impose B.C. on [M]. Then Factorize

M) into [L][L1T.

Form the Stiffness Matrix [K] for
the Entire Structure by Assembling
the Element Stiffness Matrix (kj.

m(Time Cycle Index) = 0

j -
|

Evaluate {Ag*} . and {gq*} c

[«

Assembling the Element

by

Evaluate the Generalized
Nodal Force {F*} N

m=m+ 1 !—

Evaluate (A'Yij)

Evaluate (SIJ ) "

Evaluate (YE.> J)

m

1 1 Nodal Force {f}

t

r [o)

t

™

.

Evaluate {£°} ,{£“} ,ana {7}
q tm o] tm p 't

m

ij tm
Evaluate ({F*} + {F*q"C} + {F*¥} + {F*"})
P Pty
Form Product [K] { q*} £ |
m
1

Evaluate {Ag*} e and {g*} N

m+l m+l

i

Es m Equal to Prescribed Number of Total Time Cycles? L

No

Yes

Stop ) (b) Conventional Method

FIG. 4 CONCLUDED
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D — ELEMENT NODE NUMBER

Y

FIG.5 NOMENCLATURE FOR GEOMETRY ,COORDINATES,AND DISPLACEMENTS OF
A CURVED-BEAM FINITE ELEMENT
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where

o
H

effective shear carrying area of beam cross section

w = transverse deflection

=
[]

bending moment

S = transverse shear force

FIG. 7 GEOMETRY AND NONDIMENSIONAL QUANTITIES FOR A FREE-FREE
BEAM SUBJECTED TO AN APPLIED CONCENTRATED TRANSIENT
LOAD AT ITS MIDSPAN
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©  MODAL SOLUTION (REF. 165)

NO. OF ELEMENTS NO. OF DEGREES
PER HALF SPAN OF FREEDOM (DOF)
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<) MODAL SOLUTION (REF. 165)
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(b) T2 (Timoshenko-Type FE Solutions)

FIG.8 TRANSVERSE SHEAR RESPONSES OF THE MECHANICALLY LOADED SMALL-DEFLECTION
LINEAR-ELASTIC FREE-~FREE BEAM
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© MODAL SOLUTION (REF. 165)
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(d) T4 (Timoshenko-Type FE Solutions)

FIG.8 CONCLUDED
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FIG.9 MOMENT RESPONSES OF THE MECHANICALLY LOADED SMALL-DEFLECTION
LINEAR-ELASTIC FREE-FREE BEAM
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~——e—  EXPERIMENT
THEORY : EL~SH~SR
° PRESENT FINITE ELEMENT
FINITE DIFFERENCE

t = 1140 usec

t = 2580 usec

(b) Deformation Profiles

FIG.33 CONTINUED
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PRE-~-IMPACT

PRE-IMPACT
FRAGMENT

— HINGE PIN

{(b) Partial Ring as a Deflection Device

FIG. 36 SCHEMATICS OF THE FRAGMENT CONTAINMENT AND FRAGMENT DEFLEC~
TION PROBLEMS

256



ROTATION

% MULTI—BLADED

(a) Single-Blade Fragment

DISK

(b) Multi-Bladed Disk Fragment

—t

(c) Multiple-Blade Fragments
FIG. 37 SCHEMATICS OF SOME TYPES OF FAILED-ROTOR FRAGMENTS
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COLLISION

IDEALIZED
FRAGMENT

LOCALLY-AFFECTED
RING SEGMENT

RING DISCRETIZED INTO
SEGMENTS FOR ANALYSIS

FIG. 38 SCHEMATIC OF A CONTAINMENT RING SUBJECTED TO
SINGLE~FRAGMENT IMPACT
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CG OF FRAGMENT
(mfl If)

(a) Fragment and Consistent-Mass Ring Segment

fz\>/
(b) Fragment and Lumped-Mass Ring Segment

NOTE: 1. Uf represents only the component of fragment-c.g. velocity which
is perpendicular to the (idealized-as-straight) ring segment
immediately prior to impact.
Ul and U, are, similarly, the perpendicular-direction components
of thé ring segment nodal velocities.

20

FIG. 39 SCHEMATICS OF FRAGMENT-RING COLLISION MODELS
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UZ } 401
s
NODE 2 NODE 1
(a) Consistent-Mass Model
U, : sUl

»

(b) Lumped-Mass Model

FIG. 40 EXPLODED SCHEMATICS OF IDEALIZED COLLISION MODELS
AT THE INSTANT OF IMPACT ‘
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Z

4 DISTRIBUTED ELASTIC
ELASTIC
P
FOUNDATION RESTORING SPRING, ks
Y
FREE RING: ks =0
(a) Complete Ring
z
n £
\\
NN
N
VA Z WV
Undeformed veformed
Y _ Y

{b) Scnematic of One Ring Segment

FI1G. 41 SCHEMATICS FOR FREE AND RESTRAINED COMPLETE RINGS
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(a) Free

(b) Smooth Hinge Support

PSR
(c) Hinge-Restrained witn Elastic Foundation
psZ
PSR

Z,W

X \ psY

Y,v

(d) Point Elastically Restrained plus Elastic Foundation

FIG. 42 SCHEMATICS FOR FREE AND RESTRAINED PARTIAL RINGS
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FRAGMENT COLLIDES WITH RING

COLLISION-INTERACTION CALCULATION

— - - == = =9 ,___.____._.____

RING I

J
VELOCITIES IMPARTED TO
IMPACTED RING SEGMENT |

CALCULATION OF MOTION

AND STRUCTURAL RESPONSE | |
OF RING

MOTION AND STRUCTURAL ‘
RESPONSE OF RING l

FRAGMENT

POST~COLLISION
VELOCITIES OF FRAGMENT

CALCULATION OF MOTION
OF RIGID FRAGMENT

MOTION OF
RIGID FRAGMENT

No

COLLISION

Yes

\V

/

CONTINUE FOR NEXT
TIME STEP OF

CALCULATION (OR
STOP, IF DESIRED)

FI1IG. 44 INFORMATION FLOW SCHEMATIC FOR PREDICTING RING
AND FRAGMENT MOTIONS IN THE CIVM APPROACH
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<]
- FRAGMENT : SINGLE
BLADE
FREE RING
RING
QUADRANT 04
ONE (Q1)
02
(a) Complete Ring (Containment Device)
sMoos axwGe -
IDEALLY CLAMPED HINGE !
\ FREE
27°
~——— FREE ~———FREE
bl b2

(b) Ring Quadrant’(Deflection Device)

FIG. 45 SCHEMATICS OF EXAMPLE PROBLEMS ANALYZED BY THE CIVM APPROACH
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CONSISTENT MASS COLLISION MODEL

o0 — — 9 ELEMENT (RQ-1B) :Ix:;mm
) 10 ELEMENT (RQ-2B) QUADRANT

A ---- 15 ELEMENT (RQ-3B)

FRAGMENT AT
INSTANT OF
“RELEASE" (t = 0)

em=]
EL~-PP-SR

V., = 7748 .

£ IN/SEC W
{ w, = 1610 RAD/SEC

£

t = 750 usec

(NG 8~ 5 4 2 ‘0
(b) t = 960 usec

FIG. 46 RING QUADRANT AND BLADE-FRAGMENT RESPONSES PREDICTED BY
USING THE CM COLLISION MODEL ’
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CONSISTENT MASS COLLISION MODEL

O —— 9 ELEMENT (RQ-1B)

o

10 ELEMENT (RQ-2B)

A ---- 15 ELEMENT (RQ-3B)

e =1
EL~-PP-~SR

(c¢) t = 1140 usec

INIO

(d) t = 1350 usec

IN.IO

FIG. 46 CONCLUDED
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LUMPED MASS COLLISION MODEL

O —-— 9 ELEMENT (RQ-4B)

PRE~IMPACT
o 10 ELEMENT (RQ-SB) gﬁﬁ
& ---- 15 ELEMENT (RQ-6B)
e =1
EL-PP-SR
" FRAGMENT AT
INSTANT OF
Ve = 7748 RELEASE:t = 0

IN/SEC B
9

we = 1610 RAD/SEC

(a) t = 750 usec

INIO

(b) t = 960 usec

FIG. 47 RING QUADRANT AND BLADE FRAGMENT RESPONSES PREDICTED BY
USING THE LM COLLISION MODEL

269



LUMPED MASS COLLISION MODEL

B ——-— 9 ELEMENT

e}

10 ELEMENT
4 ---- 15 ELEMENT

e=1]
EL-PP=-SR

{c) t = 1140 usec

INIO

{d} t = 1350 usec

INIO

FIG. 47 CONCLUDED
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PREDICTIONS FOR e = 1 AND AN EL-PP RING

O --~ -~ CM WITH 5~5-5-~5 DISCRETIZATION (CR-1B)

A —-— CM WITH 9-6~6-6 DISCRETIZATION (CR~-3B)

0 — — LM WITH 10-~6-6~6 DISCRETIZATION (CR-5B)
RING AT t = O ~10 (I N)

BLADE AT t = Q

v £ " 7748 - (
IN/SEC

wf = 1610 RAD/SEC

-2

70 (IN)

(a) t = 570 usec

FIG. 48 COMPARISON OF CM WITH LM COLLISION MODEL PREDICTIONS FOR
THE COMPLETE FREE RING SUBJECTED TO SINGLE~BLADE IMPACT
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PREDICTIONS FOR e = 1 AND AN EL~PP RING

o ----- CM WITH 5-5-5-5 DISCRETIZATION (CR-1B)

A — = CM WITH 9-6-6-6 DISCRETIZATION (CR-3B)

0 —— —— LM WITH 10-6~6~6 DISCRETIZATION (CR-5B)
RING AT t =0 10 1IN,

10

{b) t = 810 usec

FIG. 48 CONCLUDED
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ACCUMULATED NUMBER OF IMPACTS, ANI

400
e = (Q
CASE CR-11B
3001
2oof
100
e= ]
CASE CR-10B
O | 1 i 1 l
(o] . 200 400 600

TIME AFTER INITIAL IMPACT (MSEC)

FIG.50 EFFECT OF THE COEFFICIENT OF RESTITUTION ON THE ACCUMULATED

NUMBER OF IMPACTS OF A BLADE-IMPACTED FREE COMPLETE RING
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O «—- — EXPERIMENT
X =-m== CASE CR-5B (EL~PP, e = 1)
& ——-— CASE CR-7B (EL-PP-SR, e = 1)

RING BEFORE INITIAL IMPACT

To IN.

-0

(a) Time after Initial Impact (TAII) = 150 usec

FIG. 51 COMPARISON OF PREDICTIONS WITH EXPERIMENT FOR THE FREE COMPLETE
RING SUBJECTED TO SINGLE-BLADE IMPACT IN NAPTC TEST 88
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© —-— EXPERIMENT
X ------ CASE CR-5B (EL-PP, e = 1)
4 —— CASE CR-7B (EL-PP-SR, e = 1)

RING BEFORE INITIAIL IMPACT

«-10

(b) TAII = 570 usec

FIG. S1 CONTINUED
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0 -~ --—— EXPERIMENT
X --=--- CASE CR-5B (EL~-PP, e = 1)
4 — — CASE CR-7B (EL-PP-SR, e = 1)

RING BEFORE INITIAL IMPACT

-10 IN,

T0 IN.

L -10

(c) TAII = 810 usec

FIG. 51 CONCLUDED
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0 —- — EXPERIMENT
X ----- CASE CR-11B (EL-PP-SR, e = 0)

&4 —— CASE CR-10B (EL-PP-SR, e = 1)

RING BEFORE INITIAL IMPACT

10 IN .

L-10
{a) TAII = 150 usec

FIG. 52 COMPARISON OF PREDICTIONS WITH EXPERIMENT FOR THE FREE COMPLETE
RING SUBJECTED T0 SINGLE-BLADE IMPACT IN NAPTC TEST 91
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0 ——-— EXPERIMENT
X -=-=—- CASE CR-11B (EL~PP-SR, e = 0)
6 —-— CASE CR-10B (EL-PP-SR, e = 1)

RING BEFORE INITIAL IMPACT

10 IN.

(b) TAII = 570 usec

FIG. 52 CONTINUED

279



0 — - — EXPERIMENT
X --~= CASE CR-11B (EL-PP-SR, e = ()

& —— — CASE CR-10B (EL-PP-SR, e = 1)

RING BEFORE INITIAL IMPACT

L-10
{c) TAII = 8l0 usec

FIG. 52 CONCLUDED
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O ~—-—— EXPERIMENT (WITH REVISED INITIAL IMPACT INSTANT)
& ~— — CASE CR-10B (EL-PP-SR, e = 1)

RING BEFORE INITIAL IMPACT

L0

(a) TAII = 570 uUsec
FIG. 53 COMPARISON OF PREDICTIONS WITH EXPERIMENT FOR THE FREE COMPLETE

RING SUBJECTED TO SINGLE~BLADE IMPACT IN NAPTC TEST 91, WITH A
REVISED INSTANT OF INITIAL IMPACT
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0 ——-— EXPERIMENT (WITH REVISED INITIAL IMPACT INSTANT)
& — — CASE CR~10B (EL~-PP-SR, e = 1)

RING BEFORE INITIAL IMPACT

(b) TAII = 810 usec

FIG. 53 CONCLUDED
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a IC END CASE RQ-5B

g0 —— HINGED END CASE RQ-8B

we = 1610 RAD/SEC

(a) Time t = 750 usec

N

(b) t = 960 usec

FIG. 54 COMPARISON OF THE RESPONSES OF RING QUADRANTS WITH IDEALLY-
CLAMPED AND SMOOTH-HINGED ENDS TO SINGLE-BLADE IMPACT

283



I

IC END CASE RQ-5B

0 -—— —— HINGED END CASE RQ-8B

{c) t = 1140 usec

INIO

(d) t = 1350 usec

NO—E— A =0
FIG. 54 CONCLUDED

284



\'4 £ = 7748
IN/SEC

(a) t = 750 usec

N

INIO B )

(b) t = 960 usec

w, = 1610
RAD/SEC

FIG. 55 ILLUSTRATION OF THE RESPONSE OF A QUADRANT RING SMOOTHLY

HINGED AT 9 = 27° TO SINGLE-BLADE IMPACT
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UNIO

{c) t =1140 usec

{@} t = 1350 usec

FIG. 55 CONCLUDED
286
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APPENDIX A

DESCRIPTION OF THE MECHANICAL SUBLAYER MODEL FOR STRAIN-HARDENING,
STRAIN-RATE SENSITIVE MATERIAL BEHAVIOR

As discussed in Subsection 2.3.2, the yield surface of certain materi~
als will change in case of continued straining beyond the initial yield. The
change of the yield surface that éharacterizes the strain-hardening behavior
of the material depends on the loading history. 1In the present analysis, the
strain~hardening behavior of the material is accounted for by using the
"mechanical sublayer model" (Ref. 20, 21, 46, and 48). In order that the
present report be reasonably self-contained, the mechanical sublayer model is

described in this appendix.

In the mechanical sublayer model, the uniaxial tension {(or compression)
test stress—-strain curve of the material is first approximated by (n+l) piece-
wise-linear segments which are defined at coordinates [(Ok, ek), k=1, 2, ... n],
as depicted in Fig. A.la. Next, the material is envisioned as consisting, at any
point in the material, of n egqually-strained "sublayers" of elastic, perfectly-
plastic material, with each sublayer having the same elastic modulus E, but an
appropriately different yield stress (see Fig. A.lb). For example, the yield
stress of the kth sublayer is

E g Jk=1,2 .0 (a.1)

Then, the stress value, Gk' associated with the kth sublayer can be defined
uniquely by the strain history and the value of strain and strajin-rate presuat
at that point. Taken collectively with an appropriate weighting factor Ck for
each sublayer, the stress, ¢, at that point corresponding to strain € may be

expressed as
n
o =kg Ce Op(E) @a.2)

where the weighting factor Ck for the kth sublayer may readily be confirmed to
be '

O o=
Tk E (a.3)
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where

O = O-
= Tk Uk .- =
El= E , Ek— Ek— k-1 (k=2,3,- ) Eml—o (A.3a)

P4

The elastic perfectly-plastic and linear strain-hardening constitutive rela-
tion may be treated as special cases. In the case of elastic perfectly-
plastic behavior, there is only one sublayer, and in the case of linear strain-
hardening material there are two sublayers and the yield limit of the second
sublayer is taken sufficiently high so that the deformation in that sublayer

remains elastic.

From the computational point of view, the use of the mechanical sub~
layer model is very convenient to analyze problems with general loading paths
including loading, unloading, reloading, and cyclic loading. Its features
include the "kinematic hardening rule" which takes the Baushinger effect into
account (see Fig. A.lc). Also, this mechanical sublayer model may readily
accommodate the strain-rate effect. Figure A.2a illustrates schematically the
uniaxial stress-strain behavior for a strain-rate dependent, elastic, perfectly-
plastic material whose rate dependence is ?escribed by Eq. 2.87,

O‘-_:g;(;-e-lf:_?)
Y D

while Fig. A.2b depicts the corresponding behavior for a strain-hardening ma-

(2.87)

terial which is represented by the mechanical sublayer model, each sublayer of
which has the same values for the strain-rate constants D and p. For this
special type of rate-dependent strain-harde.ning material, the stress-strain
curve at a given strain rate £ is simply a constant magnification of the static
stress-~strain curves along rays emanating from the origin. Hovever, for strain-
hardening material whose strain~rate behavior is not one of simple magnifica-
tion, the strain-rate behavior can often be approximated adequately by employ-
ing appropriately different values of D and p for each sublayer; the resulting
behavior is shown schematically in Fig. A.Z2c.

©

One may generalize this uniaxial behavior to the two- or three-
dimensional stress case by adopting, for example, the Mises~-Hencky yield con-
dition, Eg. 2.79, and flow rule, Eg. 2.82, and applying them to each sublayer
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of the mechanical sublayer model. The strain-rate dependence may also be gen~-
eralized by assuming that the € of the one~dimensional case may be replaced
by the second invariant of the deviatoric strain-rate tensor as defined by

2 - 2 - © ) . f ‘__l_ -k 2
= i Y -3 ()

3

(3.64)

In terms of the finite increments Ayz of strain determined in each
timewise calculation step of the present procedure, the "replacement €"

given by Eg. 3.64 becomes:

!
. ] 3 £ i 1 k2y3
= aglz oYYz 6N ] .4
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UNIAXIAL STRESS, o

UNIAXIAL STRESS, o

(0’4 (4)

——=ACTUAL
——APPRCX.

i
1
1
1

x

1

I

|

1

|

!

{

1

/ 1
SLOPE=E =E !

STRAIN, €
(0) ACTUAL AND APPROXIMATED CURVES

gq

—— o—— ——, td i

o
03

~ v Rn i
%o SUBLAYER 2

%5 ~SUBLAYER |

~SLOPE =E

- >
STRAIN , €
{b) PROPERTIES OF THE ELASTIC, PERFECTLY -PL ARTiC SUBLAYERS

FIG. A.l1 APPROXIMATION OF A UNIAXIAL STRESS-STRAIN CURVE
BY THE MECHANICAL SUBLAYER MODEL
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1/
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2'72 / /
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)
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(c) SCHEMATIC OF LOADING, UNLOADING, AND
RELOADING PATHS

FIG. A.l CONCLUDED
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S3TRESS

STRESS , o

[ e e e e e é:b
’ .
r-—--——--—---—-——---€=0

i ¢ ’ ~

| € =0

' O<a<b

STRAIN, €
{2} ELASTIC, PERFECTLY-PLASTIC MATERIAL

STRAIN, €
(b) SPECIAL STRAIN HARDENING MATERIAL

FIG. A.2 SCHEMATIC OF STRAIN-RATE DEPENDENT UNIAXIAL
STRESS~-STRAIN CURVES
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STRESS, ¢

STRAIN,e

(c) MORE GENERAL STRAIN HARDENING MATERIAL

FIG. A.2 CONCLUDED
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APPENDIX B

DEFINITION OF FINITE ELEMENT MATRICES INDICATED
SYMBOLICALLY IN THE TEXT

The various matrices which are used symbolically in Section 4 for an
arbitrarily curved beam element are documented in this appendix,and their
specialization to represent simple circular ring and straight beam elements
are also listed.

B.1l Bernoulli-Euler Type Deformation Behavior

B.l.1 Bernoulli-Euler Type Curved Beam Element with

CC Assumed-Displacement Functions*
{EJ | w [Lixz ]{2‘4  (4.13a)
VB Sevi Wi Wi Vg Vi Weer % \/,7¢'+1JT=[8AJ {8} wan
. £ .

g =.DJ {7} +'ZLL}J{D:}LDZJ {)

o i i (4.24)
S ——LP;J 145 (4.24)
(m] =f:’:l [f\éi'(;]T [3%] “i:;z)] d7 (4.3@)'
{fy = 'Zif'[N‘Q’]T{g:} a7 (4.34a)
4= [ (|BSL = (D M) d e
(h) =f,;ll:‘ sz}LDZ-’ L 4% (4.372)
K[y (ofeshi® (AR 2

*
Equations not numbered with a prefix B refer to pertinent equations in the text.
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Y=o Ebh(Tegaingin (3] {R)dy

(4.404)

+/7}?+'Ebl,‘(LDlJf$f|' "LZJ{ j;_DJ 3 fD,_}LDud'[{ﬁ)
(Ic;} =[[[7M(EEP]‘D,}+§EE$]D3})JV,, (4.400)
uLl - (j['[m EE- LDJ dV, {Z_} (4.40¢)

In the following, the matrices [|J ('Z)]’ [A] ’(Llj‘-_[' =42 3)) [N(?J],and
[B] appearing in the above expressions are listed for an arbitrarily-~curved
beam element(see Fig. 5):

. | cose SN -zcosd+ysing 7 0 0 ’?2 '?3
(Ui S I

~SIN®  cos$¢  z SING+ycost 7
(coscl{ SING; 0 0 0 0 0 0 \
~SIN®;  Cosd: 0 0 0 0 0 0
0 0 | 0 0 0 0 0
[A]z‘ﬂ?%f" wE | 0 o o 0
o5t SING Vs, Do OZ 2 Vo Doy
~siNd, cosd,  Y,camb, O D Ten o 0
0 Q I '%‘;1;" 29, 3’7;, _—%"; -‘%‘SM
TEOHRE OWRE L 0 0 24 30
LtDj=10 o0 o I PR TR 27 370 1(A .2
LDy=i0 o 1 - 29 37 iR R IA e

. Y 174 )é -
1 Du=10 0 0 {7 -2 -6 ARt RiA .,
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(cosd  siINg  -Zcosdeysing 7] 02 03 72 v
-SIN®  coS®  zZSIN+Ycosé 0 N [ 02 7 {A—’]
. 2 _ -
L 0 0o l k.27 37 % R =
(7.0
"! ;
0 (B.6)

,

= mass per unit length of the beam element

M B

= mass moment of inertia of the beam cross section

Note that, in the above equations, only the matrix [ A] is given. In

. . . -1 .
practice, one forms its inverse ,[ A ] + by means of available standard computer

subroutines. Also note that subscript i ( or i+l ) is used to denote the value

of the quantities at node i ( or node i+l ).

For application to simple circular ring elements, the geometry and

nomenclature of a typical circular ring element is shown in Fig. B.l where the

local and global coordinates are arranged to take advantage of the symmetry of
the ring element's geometry. The matrices [U('])], [A] , (oD, 0=1,2,3 ),

[Nop],

{ m] ,and [ k] for a simple circular ring element are listed in the

following:

[U('z)]

={c05?\ -SINA = R(I-cosAcosA) n

2 3
T U] o
SINK  OSA  RSINACOSA) 0 )

~

~ o
~y o
o ©
o

. 2 2 _5_3
coSA  SINA  -R(1-cos'A) ‘_251 0 0 > "%
2 3

-SINA  (OSA -RSINAWSA 0 & "R 0. 0 3
S 8 _st s
OJL OOSJ\ I 2R s BZ ﬁ 8 2

_| SINA - _
(A)| e amawn o b g,

COSA . -SINA  =R(I1-tosn) 3 o o S £

z ; s 4+ 8
SINA  (0SA  RSINAGSA o 2\;s_ % 0 z 0 :
-3 : st LS
. oA ! RS % 4R IR
L"i—',—{"-’ﬁ B Q%- ~SINAGWSA | g 0 s 3%‘
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tDj=Lo o0 o | g TR 27 375 (A7)

LtDu=1 0 0 1 TR 27 37 YR Thy (A
LDj=L 0 0 0 VR -2 -67 2?/R 372/RJ [A-:J

COSA  -SINA  —R([-cosAcosA) n 0 0 722 73

[N('p]= SINA  coSA R SINAcoSA ¢ 7’ 7 0 o
0 0 l ko2 o3 —TZ: -4
[ m, ]
0 \mn\ SYMMETRIC
m, 0 m
(m=(AT | 0 M 0 M, [47)

where

0 My 0 My My

m‘ 1 0 m53 0 0 m“

My 0 m’r3 0 0 m?& \ mn\

0 Mg 0 My My 0, 0 My

m,=ms3JS

M31= M R(-2RSINA+SCOSA)

M| = R (-2 N2 C0SA+BASINA +(ZACOSA ~[2SINA )
My = 5 R(2NA SINA+A4NOSA-4 SINA )

Ma =mS

Me2 ="m Rz(—ZA COSA+Z2SINA)

5 RI(PNSINA+ANCOSA-LSINA)
Mgy =71 RE(-2N3CoS A+ 6 NSINA+ [ 2ACOS A= [25INA)

q§
i
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(B.11)

(A7)

(B.12)

(B.13)



2 Pl
My = 7 R(S+SCcoSA-2RSIN2ZA) +T 5

Mz =m R5(—2A3c0511 + ENSINA+ 12 A COSA-12SINN ) CosA + 1 5’/4

3
s <R (5T~ s .2 e csne i) 12
m = (’;n’_,,z) 53 m — -l_\is
44 R/ 7z ’ 4 7 6R
Cm. T, 8 = 7Sz
Mea= (i L) S , My = on LS
__1s* = ms’, 415
Mgs 40R , 6T 248 * go
N _31~55 _ ’_\_+;f 55’
Mz = T FoR o My =L U713
~~ 7
Mg g ‘(’"*%2)4%8
0
3x3
- - o SYMMETRIC
'&w%ﬁ
{ ~
- . 3
(k]=[A9 kS szz 4k,s) (]
0, (R R
5x . 7 .
0 0 ..LS. +3k,53) (B34
. kS 1S (o ays®
! E
| ooy s® 3hsTkS) 0 0 [kt
Ry R R (H g )5

where,in Egs. B.13 and B.1l4 , ?n'-':j’obh, I-= 0%3’ k,=Ebh, and k2=E—ll°-ik-
P, = mass density per unit volume of the undeformed beam
b =the width of the beam
h =the thickness of the beam

E =Young's modulus
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B.l.2 Bernoulli-Euler Type Curved Beam Element with

LC Assumed-Displacement Functions

ut =\ = (W) ig) ©.15)
(1= Ve Wi Yo Ve Wer Vid = (6/36] {B] (8.16)
g, = LD, g} vz of (DS D 19 .17
o= LD fg) (8.18)
) [ml‘jt [Aﬁi;l)] [B]IN ] 47 (8.19)
{5 =f;‘ [N {;w} d (8.20)
{85 = (5, (IDJL = {23 M) 4 (8.21)
thl= 7" "D LD L dY e
(k) /;"([ Cebhins + {0, BB D) gy 0.2
Hy 1=—f1 Evh(Fegatnfumnig) ) foi a7
[,,;"EL,A(LDJ { +3L8 (DAL {G1DLDAAE G
nE (HZ"'(E&”D. f+tEE’{D]) d Vi (8.2
b=/ - AT-SPRRTY | (5.26

In the folowing, the matrices [U (7)] ,[A ],(LD,('JI £=14,2,3 )) [N('[)],and
[ B] appearing in the above expressions are listed for an arbitrarily-curved

beam element ( see Fig. 5 ) :
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fcosé s -zcosdryswe % o0 o0
(=
{u 7J 'SIN‘P CDS‘? 4 SING +yC05¢i> 0 72 73J {(B.27)
[ cos ¢ sINd 0 0 0 0
-SING:  cosd; 0 0 0 )
[A J=| © ° ! o 0 0 (8.28)
. coSduy  SINEy Y SING,, % 0 0
3
-siNd,,  cosd. Yeer cos ., 0 ’Z:,. ' 7&:
o 0 | — R 2 3
2 -
tDy=L 0 o o ] /R ’?3/R_, [A] (.29
tDzy=t 0 0 | _—l?'( 27 37, (A7) (8.30)
:é _ -1
LDi=L o 0 o K5 2 -6[A] @y
(cos¢  SIN®  ~zcospeysing 7 0o 0 .
[N)=|-sind  cos¢  zsing+ycosé o p° 7° (A7)
L 0 0 | ')Z/R 27 372/ (8.32)
) _{7"-.% 0
lB] oo 1 (B.33)

For application to a circular ring element ( see Fig. B.l ), the matrices
(Um) A7, (LDid,i=14,23), [NUp] [m] . ana[k] are listed in the

following:

COSA =SINA —-R(}-c6SALOSNA) Io)
fu“?’] =[ R (O (B.34)
1—

SINA  ¢OSA RSINACOS A o 7 7’
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.
cos/

N

SINA  —R(l-cos’A) =S/ o0 0
~SINA COSA = R SINA COSA 0 SZ_ —S’/g
(A= 0 0 ! 2R 7S 35% (B.35)
cOSNA  —=SINA —R(l—coszA) S/2 0 0
SINA COSA +R SINA COSA 0 Ly/SNV/;
2
L o 0 ! SRS 354
2 -
LDy=L0 c 0 I T/R 75/RJ[A ] {(B.36)
- 2 -

LDl=,0 0 I “Ir 27 37 4(A ] (B.37)
L=, 0 0o 0o R -z “67 L A—] (B.38)
c0SA  ~SINA —R([-cosAcosA) n 0 0

15
NW=| sina cosa Reinacosa o n° 7?|[A]
(B.39)
0 0 [ ~%R 27 37
[ 'm, )
ot 0 m“\ SYMMETRIC ¥
[m]=[A7} [ Ms O Py (A7)
0 My 0  Mua (B.40)
0 My 0 M My
Mg 0 My 0 0 My
where
m,=mS$
Mz = %R (2R SINA + S COSA)

m;, = TR 2% cos A+ ENTINAHIZNCOS A =12 SINA)
My =m3S

Myz2 = M R(-2ACOSNA+2SINA)

Myz = % R2QNSINA + 4N\ CoSA-4SINA )
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My = W R(S+Scos’A-2ZRSINZA )+ TS
Mgz = %’RSCOS/\ (-2 APcosn+ENSINA +12ACOSA—I2.S'IN/U+IS%
mea = P+ IR ) sz
o~ o3
Mss = 7 S/g0 + 1573
~q 5
My, = WS /a8 +9TS /5o
N ]
O3'3 ~
| Dy SYMMETRIC ,
- -1 + 2 -1
(kl={a"]]  rchegdds (A)
| 3 5 (B.41)
33 kS _2kS kS k)
|(t2 R} (8°Rl z\
' 7
L0 0 44—’&;35,(;3#;53)
where 3
mo=pbh, T=ptl  k=Ebh,

The corresponding quantities for a straight beam element (see Fig. B.2 )
L

can be obtained by setting R~ 0, A=0, and RdA =dj in the preceeding
equations. Thus, one obtains
0 o 0 0
(uw) =l 1 ’ ) ) ¥ (8.42)
0 y 0
[ ] 0 0 -5/7 0 0
o | - o Su -5
[A)=|o 0 1 0 -5 3% 5.43
I o 0 S/ o 0
o | Sk o Sra S8
o o -0 o S 354]
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D)=Lt 0 O o |
LtDiy=1 0 0 | 0 2
LDsp = 0 0 0 0
I 0 O Y 0
(Npl=l 0 1 y o y*
o 0o | 0 2y
mS.
o MmS.
-1 T .’?_iifs
mj=(AT| 0 ¢ E
0o O 0
~S3
o T3 ;’ 3
| o 0 i3
(2,‘3 ._  SYMMETRIC
i
(k1 =87 , ' kS <,
5s) 0 4aks
]
0 0

B.2 Timoshenko-Type Curved Beam Element

-2

0 0 4 [A] (B.44)
y 3)'2__1 [A”] (B.45)
-6y, [A] (B.46)
0
Yyl IA] (B.47)
3y?
SYMMETRIC
(A7)
" @S
iz~
0 5’—5;" %53
T g
mS ,1I5"|(B.48)
0 0 448 8o |
[A]
N (B.49)
3h,s’

For the Timoshenko-type curved beam element, only the element properties

with the linear displacement interpolation functions are presented here. The

element properties with higher order assumed
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derived in a similar manner as described in Subsection 4.4 .

RS EIRCT AN

(4.54)

1’3& = Ve W G0 Vo Wi m_l = {'(,4,]5 B} (4.55)
€, = 1Dafg) ~ ELLZ“ {?:}'L%E" {4 (4.58)
k= LE%J {5} (4.58)
T = L,?-gi fﬁi | (4.58)
(m] = [77:-_"[/\’(7’]7[3] [N”Z’] an (4.61a)
£} =/77M NI {Fwt 47 (4.61a)
{4 = {7‘*' oy M {D4J S)dy (4.61a)
thl = /7‘,“ {Q}LDZJ L 4y (4.61a)

(k] /7“' Ebh LD +{D J‘ £k’ 314{1?461, hiDed)dy
Ht=-< "“M szzJ [afuigh 2
{,["' Ebh (LDafg)+ 190 (DIDE§){DS LD d0ig) >
4([?'”:2 SEE{ 3} GT{ })d\/ﬂ (4.62a)

NL /(_(7” LDZJ dVn { ;} (4.62a)

In the following, the matrices [LJU[J] , [A ] , (LD, d=1234) [N(?)]7
3
and [B) appearing in the above expressions are listed for an arbitrarily-

{4.61a)

(4.62a)

curved beam element ( see Fig. 5 ) :
[ cos¢ SING —zc054’+ysm4> )2
[Upl=l-siné  cos¢  zgind+ycosd o
g 0 0 0

0 o
0 0 (4.54)
v
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[ cos b, SING, 0 0 0 0
-SINP  cOosé 0 0 0 0
(0]

(A=} ¢ ° 0 o (B.50)

coSbyr  SIND,,  YasSINE,, Teer Q@ O

~SIN Cb‘-_,_. cos 4’.&1 )’g'ﬂ COS‘E;, 0 0 0

0 (o] 0 0 { ’7&4'

LDy =00 0 o0 [ 0 04 [AT) @.50)
Dey=, 0 o 1 TR o 04 [AT] (B.52)
LD3_] =. 0 0 0 0 o L. 147 (B.53)
LPay =0 o 1 “UrR 1 9, [AT] (B.54)

cosd  SIN® -Zzcasp+ysiNg 0
[Np]=|-swé cosé  zsiNng+ymsd 0 0 0 (A7) ess)

0 0 0 1N

" 0
) (B.56)
0

~3

o

",

I

(B] =

For application to a circular ring element ( see Fig. B.l ), the matrices
[U("Z)-] ,LAT, ( LDy, (=1.23,4) [m] ,and [ k] are listed in the

following:

COSA —=SINA  —R(I-cosA COSA) o o

7
[U(’Z’]= SIN A cos A RSiNACOSA o 0 0 (B.57)
o I 7]

o] 0 0
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(cos/\_ SINA 'R(I-COSZ/U —g— 6] o ]
=SINA.  coSA  —RSINACSA 0 4] 0
[A]=] © 0 0 o 1 -5
- - 2 s {B.58)
cosN SINA Rel-cos A) 5 0o o
SINA  COSA RSINNACISA 0 o 0
L o 0 o o 1 F
Diy=r 0 0 o0 ! o o1 [A7) (B.59)
Ly=c 0 0 1 TR0 04 TAT) (B.60)
tPsy=L 0 0 0 0 o 14 [AT] (B.61)
LD4J =L 0 0 I ~7R 7, [A™] (B.62)
[ m,_ ]
0 msy, SYMMETRIC
-1 ~ -1
(m=[A7} |my o™ s [A”]
0 My, 0 o Maa (B.63)
0 Y [¢] 0 ) V)?;;\
. 0 0 o 0 0 M g

where

mll

m3| =

Mz =

S
T R(-2R SINA+ ScosA )

E

Mz = =% RE (-2 A COSA+2SINA)

Mgz = ’rZRz(S+ Scosz/\—ZRs:NZJ\)
Maa = W Sz

Mys = TS

m = TSV
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0 w
212 ~
t \;‘S SYMMETRIC
| 6bhS .
tkl =47, | (ebhs+ €k %) A
O, 0  (EBnS* pa ) [A]
" ebhs 0o  &bhks g e
_ s> T eLh’s, 6bhS
0 Gbh( i2R 0 iz 12

For application to a straight beam element {see Fig. B.2), the matrices

(U], (AT, (LDct, £ =1,2,34), [m). and [K] are listed in the
following:

| 0 o0 y o o
(U ‘7’] =] 0 ! Y 0 0 o (B.65)
6 o o 1Y

{ 0 0 ‘% 0 0

0 I =% 0o o 0

_ Ky
[A ]—' 0 0 0 0 l /2 (B.66)

[ 0 0 S 0 O

0 ! /2 0 o O

L0 0 0 0 | S/ |

LDoy=L o 0 0 ' 0 04 [A7] (B.67)
LD)__] =L 0 0 | 0 0 01 [A-'J (B.68)
LDsy =0 0 0 0 0 0 lJ [A"] (B.69)
tPy=0 0 0 1 0 1 s 1A (8.70)
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S,
mS
. ¢ S st 0
mil= T -1
[m]=[A"] LN [A7]
O '2\ ‘B-?l)
\‘i."s:
f~53
Iﬁ‘ ]
N
2¢2 ..
[k =[A"]T :6'517.5\ SYMMETRIC
Oz, O EbhS (A7)
1GbhS 0 &bhS (B.72)
s EbW ., GbhS?
0 0 ('2 S+ .l_)
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L, 2,2

FIG. B.l SIMPLE CIRCULAR RING ELEMENT
2Z,W
5 s
‘-——— 2 —fe— 2 ——l
- - — |y - - — —
FIG.

B.2 STRAIGHT BEAM ELEMENT
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APPENDIX C

MIXED FINITE-ELEMENT MODEL BASED UPON REISSNER'S VARIATIONAL PRINCIPLE

This appendix contains, for the purpose of demonstrating the use of
different variational principles, the formulation of the equation of motion
based on a mixed finite-element model: (1) by assuming a displacement field
which is continuous over the entire solid, (2) by assuming a stress field for

each individual element. However, no evaluation of this model is made.

In the Principle of Virtual Work, the independent quantity which is
subject to variation is the displacement; in Reissner's variational principle,
the independent quantities which are subject to variation are stress and
displacement. Reissner's variational principle may be stated mathematically
as follows (Ref. 159):

STE =((5¢5,) aVo= §B-Sw+ ST~ (vemw) § T 4A, =
/{( 3 /(ov - (C.1)

where

58 = ([ 55 o[l (Cogpa S0 55y,
V° = ‘t\:/ﬁe variation of the complementary
work done in an arbitrary infinitesi-

mal virtual stress 65%7 increment
4

{(C.2)
P . a .
V,-; - > ( Ve, 7 ~+ V -+ V;A V)} ) (C.3)
on = portion of A over which the displacement v, is prescribed
o i

C,q ki = elastic compliance tensor
andBW 5_[ S‘a T Y;are defined as previously stated in Section 2.

In applying Eq. C.1 to the finite-element analysis for a solid continu-

um which is conceptually subdivided into N discrete elements, one can write
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3= 21 /[fm dV,-§B,-IW,+ 51, /w-mmA .}

(C.4)

where the term Cn arises from a possible jump function of the derivative of
v, across the interelement boundaries. If the assumed displacemgnt functions
are such that vy and vi,j are continuous across the interelement boundaries,
then Cn = 0 (Ref. 7).

The assumed approximate stress interpolation functions which need not
satisfy the equilibrium condition for each individual element are expressed

using a finite number of independent parameters f{al:
«f ol 1
s*= R} {a] (.5)
and the displacements are approximated by interpolation functions [N] to

satisfy the interelement displacement and slope compatibility conditions

anchored to nodal generalized coordinates {q}:

{v}:[N]fﬂ (c.6)

By applying Eq. C.6, Eg. C.3 becomes
K'i' = LD"fJ f%} L;"j LD7"{Z’} (.7

Using Egs. C.5, C.6, and C.7, and if the boundary displacement can be

made to satisfy the prescribed value, Eg. C.4 may be expressed in the form
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o Tl :Zi_{:_50‘1</f( R‘“C kzLR Yy, f{d} /ﬂ ‘7‘7 4V,
J,m (R (L4119} + 71411, }LDRZ}MV}
+L5;J{{f{ ”(LR Y o(JdV /ﬁ D,,JLD J{%(:.R J{ j 4V,

-/[/tNJP fiaV, /fIN] A/[[[NJP[NJJV{@)J

N

:z{uou (=Trifa} «isj~+{t))

n=i

11330 KHp)+ ThIHg) — {4+ (iG] =

{(C.8)
where the following quantities are evaluated for each finite element:
iq
[‘/-J—//[ J( A;leR J dv {C.8a)
] 14
{S}:'/([ i R }Yl-f-d\/,, (C.8b)
Vi

:/ﬂ ;qu(“- ?)'*' LZJf jLD J;g})d\/ (c.8c)

[{( 4;J(LR Jf})d\/ﬂ (c.8a)
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[h] —/{{ LDiJ (L RM;! fd}) 4V, (C.8e)
{F} = {\5{ [N]Tpo{f§ an +£{ [NB]T{_ItdA,, (C.8£)

[m] = /5{ fN]TFo [N]dV, | (c-8g)

The quantities {a} can be varied independently for each finite element;
hence, from Eq. C.8 it may be concluded that

[rifd] —{s) —{t} =0 .9

fd} =_[V]—'( fsf+it}) (c.9a)

and, hence, it follows from Egs. C.9 and C.8 that
N Ve
% LB?J({1’}*[!’1]{3%‘{{}*[”"]?;“20 (€.10)

It is seen that Eg. C.1l0 is of the same form as Eg. 3.14 which is
associated with the assumed-displacement type of finite-element model. Thus,
transforming the element nodal displacements {q} to independent global dis-
placements {q*} of the discrete-element assembly as described previously will
lead to the same form of matrix expression as given by Egq. 3.17 which represents

the "improved formulation" form of the dynamic equilibrium eguations:

[M]fﬁ‘ﬁl P\'*[H]{ } fF} (€.11)

However, it should be noted that the numerical values of the terms in [M], {p},
(4], and {F*} of Eq. C.11l can be, in general, different from the corresponding
symbolic quantities in Eq. 3.17.

Given a set of initial conditions {q*}o, {é*}o and {F*}o at time zero,
and the proper boundary conditions, the system of second-order differential

equations, Eq. C.ll, together with Eq. C.9 may be solved in a step-by-step

timewise fashion. Let it be assumed that at a typical time instant tm, one
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knows the generalized nodal displacement {q*}m. the strain component {Y }

and the plastic strain component {ijhm at any station in each finite

element. The stress parameter {a}m for each individual finite element may

be calculated from Eq. C.9, where {s}m and {t}m can be evaluated from Egs. C.8b
and C.8c, respectively. Having the stress parameter {a} at time t . one can
calculate {p}m and [h]m for each finite element by using Egs. C.8d and C.8e,
respectively. Now, assemble this information for the discretized structure.

Then Eg. C.l1ll together with the use of a proper timewise finite~difference
operator to approximate {ﬁ}m can be employed to determine the displacements

{g*} or the displacement increments {Ag*} at the next time instant t ., Since

all quantities except {&*hn in Eg. C.1ll are known, and hence {&*}m can be readily
calculated. Having the displacements or displacement increments at time tm+1' the
strain (or strain increment) at any station in each element may be found from Eg.
C.7. With the displacement and strain available, the desired stress parameter at
time instant tm+l can be determined through the use of proper elastic-plastic con-
stitutive relations, and Egs. C.5 and C.9. Then Eq. C.1ll can furnish the displace-

ments for the next time step. The process is cyclic thereafter.

It should be noted that the application of the mixed finite-element model in
this form does not provide any particular advantage over the assumed-displace-
ment finite-element model since the interelement boundary compatibility is
still required. However, the use of the mixed finite-element model has its
merit in the elastic analysis of plates and shells (Ref. 7). But for the
elastic—-plastic analysis, the proper interaction (yielding) surface between
stress and moment resultants has not been found; such information, however, would
be needed in this mixed method.

Finally, it can be expected that assumed-stress finite-element models,
such as the assumed-stress hybrid model, the equilibrium model, etc., (Ref. 7)
will not be as accurate as the assumed displacement finite-element model for
elastic-piastic transient structural analyses, unless the time-step size is
made sufficiently small, since the stress—strain curves for many structural
materials are usually very flat in the plastic range; thus, a small errcr in
the strain will produce a small erfor in the stress, but on the other hand, a

small error in the stress will result in a much larger error in the strain.
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